首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the influence of VM26 (teniposide), a specific inhibitor of mammalian type II DNA topoisomerase, on the replication of SV40 minichromosomes in vitro. The replication system we used consists of replicative intermediate SV40 chromatin as substrate which is converted to mature SV40 chromatin in the presence of ATP, deoxynucleotides and a protein extract from uninfected cells. The addition of 100 microM VM26 to this system reduces DNA synthesis to 70 to 80 percent of the control and leads to an accumulation of 'late replicative intermediates'. The VM26 induced block of replication was not released by the addition of large quantities of type I DNA topoisomerase. We conclude, that type II DNA topoisomerase is essential for the final replication steps leading from late Cairns structures of replicative intermediates to monomeric minichromosomes. It appears that type I DNA topoisomerase can function as a swivelase during most of the replicative elongation phase, but must later be replaced by type II DNA topoisomerase.  相似文献   

2.
Replicative intermediates in UV-irradiated simian virus 40   总被引:5,自引:0,他引:5  
We have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [3H]thymidine, and isolated by centrifugation in CsCl/ethidium bromide gradients followed by BND-cellulose chromatography. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h, by which time the size of the newly-synthesized DNA exceeded the interdimer distance. No significant excision of dimers from parental strands in either replicative intermediates or Form I (closed circular) DNA molecules was detected. These data are consistent with the hypothesis that replication forks are temporarily blocked by dimers encountered on the leading strand side of the fork, but that daughter strand continuity opposite dimers is eventually established. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strands contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from UV-damaged SV40 replicative intermediates.  相似文献   

3.
Irradiation of simian virus 40 (SV40)-infected cells with low fluences of UV light (20 to 60 J/m2, inducing one to three pyrimidine dimers per SV40 genome) causes a dramatic inhibition of viral DNA replication. However, treatment of cells with UV radiation (20 J/m2) before infection with SV40 virus enhances the replication of UV-damaged viral DNA. To investigate the mechanism of this enhancement of replication, we analyzed the kinetics of synthesis and interconversion of viral replicative intermediates synthesized after UV irradiation of SV40-infected cells that had been pretreated with UV radiation. This enhancement did not appear to be due to an expansion of the size of the pool of replicative intermediates after irradiation of pretreated infected cells; the kinetics of incorporation of labeled thymidine into replicative intermediates were very similar after irradiation of infected control and pretreated cells. The major products of replication of SV40 DNA after UV irradiation at the low UV fluences used here were form II molecules with single-stranded gaps (relaxed circular intermediates). There did not appear to be a change in the proportion of these molecules synthesized when cells were pretreated with UV radiation. Thus, it is unlikely that a substantial amount of DNA synthesis occurs past pyrimidine dimers without leaving gaps. This conclusion is supported by the observation that the proportion of newly synthesized SV40 form I molecules that contain pyrimidine dimers was not increased in pretreated cells. Pulse-chase experiments suggested that there is a more efficient conversion of replicative intermediates into form I molecules in pretreated cells. This could be due to more efficient gap filling in relaxed circular intermediate molecules or to the release of blocked replication forks. Alternatively, the enhanced replication observed here may be due to an increase in the excision repair capacity of the pretreated cells.  相似文献   

4.
Detergent extraction of simian virus 40 (SV40) DNA from infected monkey CV-1 cells, after a brief exposure to the drug camptothecin, yields covalent complexes between topoisomerase I and DNA that band with reduced buoyant densities in CsCl. The following lines of evidence indicate that the enzyme is preferentially associated with SV40 replicative intermediates. First, the percentage of the isolated labeled viral DNA that exhibited a reduced buoyant density is inversely proportional to the length of the labeling period and approximately parallels the percentage of replicative intermediates for each labeling time (5 to 60 min). Second, after labeling for 60 min, the isolated low-density material was found to be enriched for replicative intermediates as measured by sedimentation in neutral sucrose. Third, analysis of extracted viral DNA by equilibrium centrifugation in CsCl-propidium diiodide gradients that separate replicating molecules from completed form I DNA revealed that camptothecin pretreatment specifically caused the linkage of topoisomerase I to replicating molecules. In addition, analysis of the low-density material obtained under conditions when only the newly synthesized strands of the replicative intermediates were labeled showed that the enzyme was associated almost exclusively with the parental strands. Taken together, these observations indicate that topoisomerase I is involved in DNA replication, and they are consistent with the hypothesis that the enzyme provides swivels to allow the helix to unwind. The observed bias in the distribution of topoisomerase I on intracellular SV40 DNA could be the result of rapid encapsidation of replicated molecules that precludes the association of topoisomerase I with the DNA or, alternatively, the result of a specific association of the enzyme with replicative intermediates.  相似文献   

5.
Perturbations of Simian Virus 40 (SV40) DNA replication by ultraviolet (UV) light during the lytic cycle in permissive monkey CV-1 cells resemble those seen in host cell DNA replication. Formation of Form I DNA molecules (i.e. completion of SV40 DNA synthesis) was more sensitive to UV irradiation than synthesis of replicative intermediates or Form II molecules, consistent with inhibition of DNA chain elongation. The observed amounts of [3H]thymidine incorporated in UV-irradiated molecules could be predicted on the assumption that pyrimidine dimers are responsible for blocking nascent DNA strand growth. The relative proportion of labeled Form I molecules in UV-irradiated cultures rapidly increased to near-control values with incubation after 20 or 40 J/m2 of light (0.9--1.0 or 1.8--2.0 dimers per SV40 genome, respectively). This rapid increase and the failure of Form II molecules to accumulate suggest that SV40 growing forks can rapidly bypass many dimers. Form II molecules formed after UV irradiation were not converted to linear (Form III) molecules by the dimer-specific T4 endonuclease V, suggesting either that there are no gaps opposite dimers in these molecules or that T4 endonuclease V cannot use Form II molecules as substrates.  相似文献   

6.
Simian virus 40 (SV40) nucleoprotein complexes were prepared from lytically infected cells and used as primer-templates for DNA replication in protein extracts from Xenopus eggs. We found that nucleoprotein containing replicating SV40 DNA served as primer-template while nucleoprotein with nonreplicating SV40 DNA was ineffective. In vitro DNA synthesis begins with short DNA fragments ("Okazaki fragments") which are, in later steps, joined to give unit length SV40 DNA strands, suggesting that in vivo initiated rounds of replication are completed in vitro in the Xenopus system. This conclusion is supported by a restriction enzyme analysis showing that in vitro DNA synthesis occurs in fragments distal to the SV40 origin of replication. Our studies indicate that SV40 DNA replication in Xenopus extracts can be used an an experimental system to study the biochemistry of replicative DNA chain elongation in vitro.  相似文献   

7.
G Prelich  B Stillman 《Cell》1988,53(1):117-126
Proliferating cell nuclear antigen (PCNA) is a cell cycle and growth regulated protein required for replication of SV40 DNA in vitro. Its function was investigated by comparison of the replication products synthesized in its presence or absence. In the completely reconstituted replication system that contains PCNA, DNA synthesis initiates at the origin and proceeds bidirectionally on both leading and lagging strands around the template DNA to yield duplex, circular daughter molecules. In contrast, in the absence of PCNA, early replicative intermediates containing short nascent strands accumulate. Replication forks continue bidirectionally from the origin, but surprisingly, only lagging strand products are synthesized. Thus two stages of DNA synthesis have been defined, with the second stage requiring PCNA for coordinated leading and lagging strand synthesis at the replication fork. We suggest that during eukaryotic chromosome replication there is a switch to a PCNA-dependent elongation stage that requires two distinct DNA polymerases.  相似文献   

8.
Cell extracts (S100) derived from human 293 cells were separated into five fractions by phosphocellulose chromatography and monitored for their ability to support simian virus 40 (SV40) DNA replication in vitro in the presence of purified SV40 T antigen. Three fractions, designated I, IIA, and IIC, were essential. Fraction IIC contained the known replication factors topoisomerases I and II, but in addition contained a novel replication factor called RF-C. The RF-C activity, assayed in the presence of I, IIA, and excess amounts of purified topoisomerases, was detected in both cytosol and nuclear fractions, but was more abundant in the latter fraction. RF-C was purified from the 293 cell nuclear fraction to near homogeneity by conventional column chromatography. The reconstituted reaction mix containing purified RF-C could replicate SV40 origin-containing plasmid DNA more efficiently than could the S100 extract, and the products were predominantly completely replicated, monomer molecules. Interestingly, in the absence of RF-C, early replicative intermediates accumulated and subsequent elongation was aberrant. Hybridization studies with strand-specific, single-stranded M13-SV40 DNAs showed that in the absence of RF-C, abnormal DNA synthesis occurred preferentially on the lagging strand, and leading-strand replication was inefficient. These products closely resembled those previously observed for SV40 DNA replication in vitro in the absence of proliferating-cell nuclear antigen. These results suggest that an elongation complex containing RF-C and proliferating-cell nuclear antigen is assembled after formation of the first nascent strands at the replication origin. Subsequent synthesis of leading and lagging strands at a eucaryotic DNA replication fork can be distinguished by different requirements for multiple replication components, but we suggest that even though the two polymerases function asymmetrically, they normally progress coordinately.  相似文献   

9.
Simian virus 40 DNA replication has been studied in nuclear monolayers prepared by treatment of monolayers of BSC-1 monkey kidney cells with Nonidet P-40. These nuclear monolayers incorporated [3H]TTP into two types of viral replicative intermediates that sediment as 25-26S and 22-23S species, respectively, in neutral sucrose gradients. The 22-23S species behaves, in dye buoyant density equilibrium gradients, as a late replicative intermediate. Examination of both species in alkaline sucrose gradients revealed the presence of two types of newly synthesized strands: (i) 4-7S strands and (ii) full-length, or nearly full-length, 10-16S strands. At low TTP concentrations (less than 0.5 muM), the two size classes were found in approximately equal amounts. However, at 10 to 50 muM TTP, the proportion of the longer strands increased, with a corresponding decrease in the relative amount of the 4-7S species. Thus, the joining of small, Okazaki-like fragments to the growing chain appears to require a much higher concentration of TTP than the synthesis of the fragments themselves. Replicating simian virus 40 DNA synthesized in the nuclear monolayers is is associated with "M bands", as previously demonstrated for replicating simian virus 40 DNA in cultured whole cells.  相似文献   

10.
P Drge  J M Sogo    H Stahl 《The EMBO journal》1985,4(12):3241-3246
Highly torsionally stressed replicative intermediate SV40 DNA molecules are produced when ongoing replicative DNA synthesis is inhibited by aphidicolin, a specific inhibitor of DNA polymerase alpha. The high negative superhelical density of these molecules can be partially released by intercalating drugs such as chloroquine or ethidium bromide. The torsionally stressed replicative intermediates bind to monoclonal anti-Z-DNA antibodies. Electron microscopy of anti-Z-DNA cross-linked to torsionally stressed replicative intermediates shows that the antibody specifically binds close to the replication forks. The superhelical structures are not formed when SV40 DNA replication is inhibited by both aphidicolin and novobiocin, suggesting that a topoisomerase type II-like enzyme is somehow involved in the introduction of torsional strain in replicative intermediate DNA. One interpretation of our data is that fork movement continues to some rather limited extent when SV40 DNA synthesis in replicative chromatin is blocked by aphidicolin. After deproteinization, the exposed single-stranded DNA branches reassociate to form paranemic DNA structures with left-handed helical stretches, while the reduced linking number of the parental strands induces a high negative superhelical density.  相似文献   

11.
Herpes simplex virus induces the replication of foreign DNA.   总被引:4,自引:0,他引:4       下载免费PDF全文
Plasmids containing the simian virus 40 (SV40) DNA replication origin and the large T gene are replicated efficiently in Vero monkey cells but not in rabbit skin cells. Efficient replication of the plasmids was observed in rabbit skin cells infected with herpes simplex virus type 1 (HSV-1) and HSV-2. The HSV-induced replication required the large T antigen and the SV40 replication origin. However, it produced concatemeric molecules resembling replicative intermediates of HSV DNA and was sensitive to phosphonoacetate at concentrations known to inhibit the HSV DNA polymerase. Therefore, it involved the HSV DNA polymerase itself or a viral gene product(s) which was expressed following the replication of HSV DNA. Analyses of test plasmids lacking SV40 or HSV DNA sequences showed that, under some conditions, HSV also induced low-level replication of test plasmids containing no known eucaryotic replication origins. Together, these results show that HSV induces a DNA replicative activity which amplifies foreign DNA. The relevance of these findings to the putative transforming potential of HSV is discussed.  相似文献   

12.
To study the mechanism by which ultraviolet (UV) light inhibits DNA replication, we examined the effects of UV 254 nm irradiation on the replication of simian virus 40 (SV40) DNA and SV40-based plasmid in monkey cells. The study was designed to determine the relative contributions made by inhibition of replication initiation and chain elongation to the immediate inhibition of DNA replication following UV irradiation. We used two-dimensional neutral-alkaline electrophoresis to examine the behaviour of replication intermediates unambiguously. Kinetic analysis using this technique showed that initiation of replication started to decline at 15 min post-irradiation. When the pulse label incorporated in SV40 replication intermediates before irradiation was chased for 1 h, most of the label was found in mature Form I and II molecules. This indicated that replication elongation took place on damaged template. We also used a transfection technique to show that heavily irradiated plasmids replicated efficiently in unirradiated transfected cells. By the transfection technique, we observed that UV irradiation of host cells dose-dependently inhibited replication of transfected non-irradiated plasmids, suggesting that the inhibition of DNA replication is due to a global change in cellular physiology induced by UV. This change was also apparent from poor staining of the chromatin by fluorescent-DNA-binding dyes immediately after UV irradiation of intact cells. We conclude that a significant fraction of chain elongation proceeds on damaged templates and DNA replication during the acute response of cells irradiated with UV is mainly controlled by the inhibition of replication initiation.  相似文献   

13.
Bleomycin (BLM), a well-known DNA scission agent, is assumed to inhibit intracellular DNA replication by damaging the DNA template (cis-acting mechanism), although other DNA damaging compounds can alter DNA replication through modulation of crucial replication factor(s) (trans-acting mechanism). The present study examines the relationship between DNA damage and inhibition of replication caused by BLM in the well-defined simian virus 40 (SV40) intracellular and cell-free in vitro systems. Treatment of SV40-infected BSC-1 cells for 2 h with BLM at 50 microg/mL, induced 0.3 break/viral genome. Under the same treatment conditions, analysis of replication intermediates on two-dimensional gels showed a decrease in both mass of SV40 replication intermediates and replication activity. The mass of SV40 intermediates was decreased to about 30%, whereas replication activity was reduced to less than 5%. These results suggest that BLM inhibits both initiation and elongation phases of SV40 replication. In a cell-free DNA replication system, extracts from BLM-treated cells (50 micro/mL) were able to support SV40 DNA replication by only 50%. In this study, non-drug-treated DNA template was used, implying that BLM can induce a trans-acting effect. Finally, the drug-induced effects on SV40 DNA replication in cell-free and intracellular viral systems were compared to the effects on genomic DNA replication in BSC-1 cells. Overall, the results support the concept that BLM-induced inhibition of DNA replication occurs by both trans- (inhibition of replication of nondamaged template) and cis-acting mechanisms (template damage).  相似文献   

14.
In vitro initiation of DNA replication in simian virus 40 chromosomes   总被引:15,自引:0,他引:15  
A soluble system has been developed that can initiate DNA replication de novo in simian virus 40 (SV40) chromatin isolated from virus-infected monkey cells as well as in circular plasmid DNA containing a functional SV40 origin of replication (ori). Initiation of DNA replication in SV40 chromatin required the soluble fraction from a high-salt nuclear extract of SV40-infected cells, a low-salt cytosol fraction, polyethylene glycol, and a buffered salts solution containing all four standard deoxyribonucleoside triphosphates. Purified SV40 large tumor antigen (T-ag) partially substituted for the high-salt nucleosol, and monoclonal antibodies directed against SV40 T-ag inhibited DNA replication. Replication began at ori and proceeded bidirectionally to generate replicating DNA intermediates in which the parental strands remained covalently closed, as observed in vivo. Partial inhibition of DNA synthesis by aphidicolin resulted in accumulation of newly initiated replicating intermediates in this system, a phenomenon not observed under conditions that supported completion of replication only. However, conditions that were optimal for initiation of replication repressed conversion of late-replicating intermediates into circular DNA monomers. Most surprising was the observation that p-n-butylphenyl-dGTP, a potent and specific inhibitor of DNA polymerase-alpha, failed to inhibit replication of SV40 chromatin under conditions that completely inhibited replication of plasmid DNA containing the SV40 ori and either purified or endogenous DNA polymerase-alpha activity. In contrast, all of these DNA synthesis activities were inhibited equally by aphidicolin. Therefore, DNA replication in mammalian cells is carried out either by DNA polymerase-alpha that bears a unique association with chromatin or by a different enzyme such as DNA polymerase-delta.  相似文献   

15.
H Ariga 《Nucleic acids research》1984,12(15):6053-6062
The soluble replication system is which the exogenously added simian virus 40 (SV40) DNA can be replicated semiconservatively in vitro, has been developed (Ariga and Sugano, J.Virol. 48, 481, 1983). This paper further characterized the in vitro products synthesized on the cloned DNA containing the origin of SV40 DNA replication. The time course and pluse-chase experiments showed that the in vitro products were converted from the open circle to closed circles having the various superhelical densities, and finally to the twisted formI DNA seen in vivo by the analysis of agarose gel electrophoresis, alkaline sucrose gradient centrifugation, and density-transfer in isopycnic centrifugation. The replicative intermediates isolated after the short term incubation had replicated strands of the size smaller than the full length, most of which correspond to that of the putative Okazaki fragment. These and the previous results indicate that this in vitro system should be useful to investigate the molecular mechanism of SV40 DNA replication.  相似文献   

16.
In productively infected cells, a fraction of large-tumor antigen (T antigen) is tightly bound to replicating simian virus 40 (SV40) minichromosomes and does not dissociate at salt concentrations of greater than 1 M NaCl. We present electronmicrograms demonstrating the presence of T antigen on the replicated sections of replicating SV40 minichromosomes. We also show that the fraction of tightly bound T antigen is recognized by antibodies from mouse tumor serum and, more specifically, by a particular T-antigen-specific monoclonal antibody, PAb 1630. A second T-antigen-specific monoclonal antibody, PAb 101, does not react with the T-antigen fraction remaining on replicating SV40 chromatin at high salt concentrations. We used an in vitro replication system which allows, via semiconservative DNA replication, the completion of in vivo-initiated replicative intermediate DNA molecules. We show that monoclonal antibody PAb 1630, but not monoclonal antibody PAb 101, inhibits viral DNA replication. We discuss the possibility that SV40 T antigen may play a role in chain elongation during SV40 chromatin replication.  相似文献   

17.
The effect of ICRF-193, a noncleavable-complex-forming topoisomerase II inhibitor, on simian virus 40 (SV40) DNA and SV40 chromosome replication was examined by using an in vitro replication system composed of HeLa cell extracts and SV40 T antigen. Unlike the topoisomerase inhibitors VP-16 and camptothecin, ICRF-193 had little effect on DNA chain elongation during SV40 DNA replication, but high-molecular-weight DNAs instead of segregated monomer DNAs accumulated as major products. Analysis of the high-molecular-weight DNAs by two-dimensional gel electrophoresis revealed that they consisted of catenated dimers and late Cairns-type DNAs. Incubation of the replicated DNA with topoisomerase II resulted in conversion of the catenated dimers to monomer DNAs. These results indicate that ICRF-193 induces accumulation of catenated dimers and late Cairns-type DNAs by blocking the decatenating and relaxing activities of topoisomerase II in the late stage of SV40 DNA replication. In contrast, DNA replication of SV40 chromosomes was severely blocked by ICRF-193 at the late stage, and no catenated dimers were synthesized. These results are consistent with the finding that topoisomerase II is required for unwinding of the final duplex DNA in the late stage of SV40 chromosome replication in vitro.  相似文献   

18.
19.
Replicative intermediates isolated from Escherichia coli cells infected with P2 gene B mutants were circular DNA molecules with single-stranded DNA tails, as opposed to the double-stranded DNA tails of wild-type replicative intermediates. The results show that the mutant replicative intermediates arose from aberrant DNA replication, aberrant due to a lack of lagging strand DNA synthesis, but with normal leading strand synthesis, so that only one circular duplex daughter DNA molecule was made from each duplex parent molecule. The single-stranded tails were shown to correspond to the nicked (and therefore displaced) parental DNA "l" strands. By partial denaturation mapping, the ends of the single-stranded tails tended to map close to the replication origin, but not all at a unique position, probably due to partial degradation or breakage in vivo, or during cell lysis or DNA isolation. By hybridization to separated strands of P2 DNA on nitrocellulose filters, DNA synthesis was shown to be asymmetric, and consistent with more leading strand than lagging strand synthesis having occurred. We concluded that the gene B protein is required for lagging strand DNA synthesis, but not for initiation, elongation or termination of the leading strand.  相似文献   

20.
O Sundin  A Varshavsky 《Cell》1981,25(3):659-669
When SV40-infected cells are placed into hypertonic medium, newly synthesized DNA accumulates as form C catenated dimers. These molecules consist of two supercoiled monomer circles of SV40 DNA interlocked by one or more topological inter-twinings and are seen as transiently labeled inter-mediates during normal replication. Form C catenated dimers represent pure segregation intermediates, replicative DNA structures in which DNA synthesis is complete but which still require topological separation of the two daughter circles. Hypertonic shock seems to block selectively a type II topoisomerase activity involved in disentangling the two circles. This is reflected in the fact that form C catenated dimers that accumulate during the block are highly intertwined with catenation linkage numbers up to C(L) = 20. While initiation of replication is also inhibited by hypertonic treatment, ongoing SV40 DNA synthesis is not affected, and replication is free to proceed from the earliest cairns structure through to form C catenated dimers. The block to segregation is rapidly and completely released by shifting the cells back to normal medium. A much slower recovery of DNA segregation takes place on prolonged incubation in hypertonic medium, perhaps because of some cellular homeostatic mechanism. The results of this work lead to a detailed view of the final stages of SV40 DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号