首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and dynamics of the chymotryptic tetramerization domain of the Mnt repressor of Salmonella bacteriophage P22 have been studied by NMR spectroscopy. Two sets of resonances (A and B) were found, representing the asymmetry within the homotetramer. Triple-resonance techniques were used to obtain unambiguous assignments of the A and B resonances. Intra-monomeric NOEs, which were distinguished from the inter-monomeric NOEs by exploiting 13C/15N-filtered NOE experiments, demonstrated a continuous -helix of approximately seven turns for both the A and B monomers. The asymmetry facilitated the interpretation of inter-subunit NOEs, whereas the antiparallel alignment of the subunits allowed further discrimination of inter-monomeric NOEs. The three-dimensional structure revealed an unusual asymmetric packing of a dimer of two antiparallel right-handed intertwined coiled -helices. The A and B forms exchange on a timescale of seconds by a mechanism that probably involves a relative sliding of the two coiled coils. The amide proton solvent exchange rates demonstrate a stable tetrameric structure. The essential role of Tyr 78 in oligomerization of Mnt, found by previous mutagenesis studies, can be explained by the many hydrophobic and hydrogen bonding interactions that this residue participates in with adjacent monomers.  相似文献   

2.
Summary Essentially complete backbone and side-chain 1H, 15N and 13C resonance assignments for the 185-aminoacid cytokine interleukin-6 (IL-6) are presented. NMR experiments were performed on uniformly [15N]-and [15N, 13C]-labeled recombinant human IL-6 (rIL-6) using a variety of heteronuclear NMR experiments. A combination of 13C-chemical shift, amide hydrogen-bond exchange, and 15N-edited NOESY data allowed for analysis of the secondary structure of IL-6. The observed secondary structure of IL-6 is composed of loop regions connecting five -helices, four of which are consistent in their length and disposition with the four-helix bundle motif present in other related cytokines and previously postulated for IL-6. In addition, the topology of the overall fold was found to be consistent with a left-handed up-up-down-down four-helix bundle based on a number of long-range interhelical NOEs. The results presented here provide deeper insight into structure-function relationships among members of the four-helix bundle family of proteins.  相似文献   

3.
Metabolism of glutamine was determined under a variety of conditions to study compartmentation in cortical synaptosomes. The combined intracellular and extracellular amounts of [U-13C]GABA, [U-13C]glutamate and [U-13C]glutamine were the same in synaptosomes incubated with [U-13C]glutamine in the presence and absence of glucose. However, the concentration of these amino acids was decreased in the latter group, demonstrating the requirement for glucose to maintain the size of neurotransmitter pools. In hypoglycemic synaptosomes more [U-13C]glutamine was converted to [U-13C]aspartate, and less glutamate was re-synthesized from the tricarboxylic acid (TCA) cycle, suggesting use of the partial TCA cycle from -ketoglutarate to oxaloacetate for energy. Compartmentation was studied in synaptosomes incubated with glucose plus labeled and unlabeled glutamine and glutamate. Incubation with [U-13C]glutamine plus unlabeled glutamate gave rise to [U-13C]GABA but not labeled aspartate; however, incubation with [U-13C]glutamate plus unlabeled glutamine gave rise to [U-13C]aspartate, but not labeled GABA. Thus the endogenous glutamate formed via glutaminase in synaptic terminals is preferentially used for GABA synthesis, and is metabolized differently than glutamate taken up from the extracellular milieu.  相似文献   

4.
A method for measuring intermolecular NOEs in protein complexes based on asymmetric sample deuteration is described. 13C/1H-I,L,V-methyl, U-2H labeled protein is produced using the biosynthetic precursors [-13C]--ketobutyrate and [,-13C2]--ketoisovalerate. The labeled protein is mixed with its unlabeled binding partner and a 3D 13C-HMQC-NOESY is recorded, yielding unambiguous intermolecular aromatic/methyl NOEs. A simple synthesis of the biosynthetic precursors via reaction of diethyl oxalate with alkyl Grignard compounds is reported. The method is demonstrated for a 35 kDa heterodimeric protein complex dissolved in a CHAPS micelle. This approach will facilitate the solution structure determination of protein/protein, protein/ligand or protein/nucleic acid complexes.These authors contributed equallyThese authors contributed equally  相似文献   

5.
One- and two-dimensional solid-state NMR experiments on a uniformly labeled intrinsic membrane-protein complex at ultra-high magnetic fields are presented. Two-dimensional backbone and side-chain correlations for a [U-13C,15N] labeled version of the LH2 light-harvesting complex indicate significant resolution at low temperatures and under Magic Angle Spinning. Tentative assignments of some of the observed correlations are presented and attributed to the -helical segments of the protein, mostly found in the membrane interior.  相似文献   

6.
Doubly-labeled [3H, 14C]tyrosines, [1-13C-]tyramine or [2-14C]tyramine, administered to the stems of intact Papaver somniferum L. plants, were found to be incorporated into the morphinan alkaloids of the plant with comparable efficiency. 3H/14C ratios of alkaloids from plants fed the tyrosines were consistent with an almost equal conversion of this amino acid into the tetrahydroisoquinoline (TIQ) and benzyl-derived segments. Nuclear magnetic resonance (NMR) analyses of morphine isolated after administration of [1-13C]tyramine demonstrated selective labeling of C-16 of the alkaloid, indicating the conversion of this amine primarily into the TIQ-derived moiety. Morphine and thebaine labeled by [2-14C]tyramine were degraded to phenanthridines and N,N-dimethyl ethylamines. Of the total radioactivity in the alkaloids 97% was found to be associated with the ethylamines, a distribution consistent with the NMR data. This preferential utilization of tyramine in the biosynthesis of morphinan alkaloids can be explained by the compartmentalization of intermediates and enzymes of the pathway.Abbreviations L-dopa L-3,4-dihydroxyphenylalanine - HPLC high-pressure liquid chromatography - NMR nuelear magnetic resonance - TIQ tetrahydroisoquinoline  相似文献   

7.
Partly biosynthetic site-directed isotopically 13C enriched photosynthetic light-harvesting 2(LH2) complexes have been prepared from Rhodopseudomonas acidophila strain 10050 by using chemically labeled [1,2,3,4–13C], [1,4–13C] and [2,3–13C] succinic acid as a precursor in the growth medium. Two-dimensional proton driven spin diffusion (PDSD) solid state NMR correlation spectroscopy has been used to trace each individual 13C isotope from the labeled succinic acid precursor to its destination into the protein and into the embedded major light-absorbing bacteriochlorophyll cofactors. For both the residues of the protein and for the cofactors distinct labeling patterns have been deduced, for protein complexes prepared from [1,4–13C]-succinic acid or [2,3–13C]-succinic labeled media. All residues, except isoleucine and leucine, have been labeled almost homogeneously by the succinic acid precursor. Carbonyl carbons in the protein backbone were labeled by [1,4–13C]-succinic acid, while the C and C carbons of the residues were labeled by [2,3 13C]-succinic acid. Leucine and isoleucine residues were labeled using a uniformly labeled amino acid mixture in the medium. The pattern labeling yields an increase of the resolution and less spectral crowding. The partial labeling technique in combination with conventional solid state NMR methods at ultra high magnetic fields provides an attractive route to resolve chemical shifts for -helical transmembrane protein structures.  相似文献   

8.
Summary We have developed an improved isotope-filtered pulse scheme in combination with a double-tuned filter, a hyperbolic secant inversion pulse, and a z-filter with a pulsed field gradient. These filtering pulse schemes have been incorporated into several one-, two-, and three-dimensional experiments, which were applied to the 13C/15N uniformly labeled N-terminal SH3 domain of Grb2 complexed with the unlabeled Sos-derived peptide. The proton resonances of the Sos-derived peptide were unambiguously assigned using isotope-filtered DQF-COSY, TOCSY and NOESY spectra. Furthermore, in the isotope-filtered, isotope-edited 3D NOESY spectrum, intermolecular NOEs between the labeled protein and the unlabeled peptide could be identified. Through these applications, we demonstrate the high filtering efficiency of the presented pulse scheme.  相似文献   

9.
Summary Oncostatin M (OM) is a cytokine that shares a structural and functional relationship with interleukin-6, leukemia inhibitory factor, and granulocyte-colony stimulating factor, which regulate the proliferation and differentiation of a variety of cell types. A mutant version of human OM in which two N-linked glycosylation sites and an unpaired cysteine have been mutated to alanine (N76A/C81A/N193A) has been expressed and shown to be active. The triple mutant has been doubly isotope-labeled with 13C and 15N in order to utilize heteronuclear multidimensional NMR techniques for structure determination. Approximately 90% of the backbone resonances were assigned from a combination of triple-resonance data (HNCA, HNCO, CBCACONH, HBHACONH, HNHA and HCACO), intraresidue and sequential NOEs (3D 15N-NOESY-HMQC and 13C-HSQC-NOESY) and side-chain information obtained from the CCONH and HCCONH experiments. Preliminary analysis of the NOE pattern in the 15N-NOESY-HMQC spectrum and the 13C secondary chemical shifts predicts a secondary structure for OM consisting of four -helices with three intervening helical regions, consistent with the four-helix-bundle motif found for this cytokine family. As a 203-residue protein with a molecular weight of 24 kDa, Oncostatin M is the largest -helical protein yet assigned.To whom correspondence should be addressed.  相似文献   

10.
13C spin diluted protein samples can be produced using [1-13C] and [2-13C]-glucose (Glc) carbon sources in the bacterial growth medium. The 13C spin dilution results in favorable 13C spectral resolution and polarization transfer behavior. We recently reported the combined use of [1-13C]- and [2-13C]-Glc labeling to facilitate the structural analysis of insoluble and non-crystalline biological systems by solid-state NMR (ssNMR), including sequential assignment, detection of long-range contacts and structure determination of macromolecular assemblies. In solution NMR the beneficial properties of sparsely labeled samples using [2-13C]-glycerol (13C labeled Cα sites on a 12C diluted background) have recently been exploited to provide a bi-directional assignment method (Takeuchi et al. in J Biomol NMR 49(1):17–26, 2011 ). Inspired by this approach and our own recent results using [2-13C]-Glc as carbon sources for the simplification of ssNMR spectra, we present a strategy for a bi-directional sequential assignment of solid-state NMR resonances and additionally the detection of long-range contacts using the combination of 13C spin dilution and 3D NMR spectroscopy. We illustrate our results with the sequential assignment and the collection of distance restraints on an insoluble and non-crystalline supramolecular assembly, the Salmonella typhimurium type III secretion system needle.  相似文献   

11.
13C NMR spectra of [1-13C]Val- or -Pro-labeled bacteriorhodopsin (bR) and its single or double mutants, including D85N, were recorded at various pH values to reveal conformation and dynamics changes in the transmembrane -helices, in relation to proton release and uptake between bR and the M-like state caused by modified charged states at Asp85 and the Schiff base (SB). It was found that the D85N mutant acquired local fluctuation motion with a frequency of 104 Hz in the transmembrane B -helix, concomitant with deprotonation of SB in the M-like state at pH 10, as manifested from a suppressed 13C NMR signal of the [1-13C]-labeled Val49 residue. Nevertheless, local dynamics at Pro50 neighboring with Val49 turned out to be unchanged, irrespective of the charged state of SB as viewed from the 13C NMR of [1-13C]-labeled Pro50. This means that the transmembrane B -helix is able to acquire the fluctuation motion with a frequency of 104 Hz beyond the kink at Pro50 in the cytoplasmic side. Concomitantly, fluctuation motion at the C helix with frequency in the order of 104 Hz was found to be prominent, due to deprotonation of SB at pH 10, as viewed from the 13C NMR signal of Pro91. Accordingly, we have proposed here a novel mechanism as to proton uptake and transport based on a dynamic aspect that a transient environmental change from a hydrophobic to hydrophilic nature at Asp96 and SB is responsible for the reduced pKa value which makes proton uptake efficient, as a result of acquisition of the fluctuation motion at the cytoplasmic side of the transmembrane B and C -helices in the M-like state. Further, it is demonstrated that the presence of a van der Waals contact of Val49 with Lys216 at the SB is essential to trigger this sort of dynamic change, as revealed from the 13C NMR data of the D85N/V49A mutant.  相似文献   

12.
A sterile glucose-mineral salts broth was inoculated with conidia of Penicillium rubrum P-13 and P-3290. Radiolabeled compounds were added to some cultures, these being incubated quiescently at 28° C for 14 days. Other stationary cultures were grown for 21 days, received labeled compounds, and were then grown for 5 more days. The remaining cultures were inoculated with 72-h-old mycelial pellets, received labeled materials and were incubated with shaking for 60 h. Rubratoxin was resolved by thin-layer chromatography. Labeled [114C]acetate, [1,514C]citrate, [214C]malonate, [114C]glucose, [U14C]glucose or [114C]hexanoate were incorporated into rubratoxins A and B by P. rubrum 3290 and into rubratoxin B by P. rubrum 13. Incorporation of [114C]acetate and [214C]malonate increased when exogenous unlabeled acetate, malonate, pyruvate, or phosphoenol-pyruvate was added. Acetate incorporation was influenced by cultural conditions, attaining maximum amounts in quiescent cultures which received labeled acetate after 21 days of incubation. Acetate incorporation in shake cultures was enhanced by reduced nicotinamide adenine dinucleotide phosphate (NADPH) and by unlabeled exogenous citrate.Abbreviations GMS glucose-mineral salts - RCM replacement culture medium - TCA tricarboxylic acid - PEP phosphoenolpyruvate - RIC relative isotopic content - PI percent incorporation  相似文献   

13.
Summary By using fully 15N- and 15N/13C-labeled Escherichia coli dihydrofolate reductase, the sequence-specific 1H and 15N NMR assignments were achieved for 95% of the backbone resonances and for 90% of the 13C resonances in the binary folate complex. These assignments were made through a variety of three-dimensional proton-detected 15N and 13C experiments. A smaller but significant subset of side-chain 1H and 13C assignments were also determined. In this complex, only one 15N or 13C resonance was detected per 15N or 13C protein nucleus, which indicated a single conformation. Proton-detected 13C experiments were also performed with unlabeled DHFR, complexed with 13C-7/13C-9 folate to probe for multiple conformations of the substrate in its binary complex. As was found for the protein resonances, only a single bound resonance corresponding to a productive conformation could be detected for C-7. These results are consistent with an earlier report based on 1H NMR data [Falzone, C.J. et al. (1990) Biochemistry, 29, 9667–9677] and suggest that the E. coli enzyme is not involved in any catalytically unproductive binding modes in the binary complex. This feature of the E. coli enzyme seems to be unique among the bacterial forms of DHFR that have been studied to date.  相似文献   

14.
A new NOE strategy is presented that allows the simultaneous observation of intermolecular and intramolecular NOEs between an unlabeled ligand and a 13C,15N-labeled protein. The method uses an adiabatic 13C inversion pulse optimized to an empirically observed relationship between 1 J CH and carbon chemical shift to selectively invert the protein protons (attached to 13C). Two NOESY data sets are recorded where the intermolecular and intramolecular NOESY cross peaks have either equal or opposite signs, respectively. Addition and subtraction yield two NOESY spectra which contain either NOEs within the labeled protein (or unlabeled ligand) or along the binding interface. The method is demonstrated with an application to the B12-binding subunit of Glutamate Mutase from Clostridium tetanomorphum complexed with the B12-nucleotide loop moiety of the natural cofactor adenosylcobalamin (Coenzyme B12).  相似文献   

15.
Two related oncogenes, TCL1 and MTCP1, are overexpressed in certain T-cell prolymphocytic leukemias as a result of chromosomal rearrangements that involve the translocation of one T-cell receptor gene to either chromosome 14q32 or Xq28, respectively. The human oncoprotein p13 MTCP1 is coded by the MTCP1 gene and its primary sequence is highly and only homologous to that of p14 TCL1 , the product of TCL1. These two proteins likely represent the first members of a new family of oncogenic proteins. A previous model of the three-dimensional solution structure of p13 MTCP1 was determined recently using exclusively homonuclear proton two-dimensional NMR methods and, almost simultaneously, high-resolution crystal structures of p13 MTCP1 and p14 TCL1 appeared in the literature. In order to gain more insight into the details of the solution structure, we uniformly labeled p13 MTCP1 with nitrogen-15. The refined structure benefits from 520 additional NOEs, extracted from either 15N-edited 3D experiments or homonuclear 2D NOESY recorded at 800 MHz, and from a nearly complete set of angular restraints. Measurements of 15N spin relaxation times and heteronuclear 15N{1H}NOEs at two magnetic field strengths provided additional insights into the dynamics of the protein backbone. On the basis of these new results, a putative binding surface for this particular class of oncogenes is discussed.  相似文献   

16.
13C NMR spectroscopy was applied to studying lysine biosynthesis in Corynebacterium glutamicum ATCC 21543, a lysine producing mutant. It was cultured in a medium containing [1-13C]glucose or [6–13C]glucose as the sole carbon source and the 13C NMR spectrum of the culture filtrate was measured. C labeling patterns of l-lysine produced were well explained by the putative metabolic pathways of the bacterium. Fixation of 13CO2 liberated from the labeled substrates and the operation of the tricarboxylate cycle in the fermentation were obviously observed. The dual operations of the classical diaminopimelate pathway and the diaminopimelate dehydrogenase bypath were supported. Calculation of the contribution ratios of the metabolic pathways was attempted.  相似文献   

17.
The uptake of different labeled precursors, their incorporation into lipids, and transport along the rabbit optic pathway [ipsilateral retina and optic nerve (ON), and contralateral optic tract (OT), lateral geniculate body (LGB), and superior colliculus (SC)] were investigated. Albino rabbits were used. The following radioactive precursors, either combined or separately, dissolved in 50 l of saline containing 15% BSA, were injected into vitreous body: [2-3H]glycerol (50 Ci), [1-14C]palmitate (15 Ci), and [1-14C]linoleate (7.5 Ci). Animals were killed at different time intervals from 1 hr up to 24 days. The radioactivity of total lipids and of different phospholipid classes from total tissue was measured. One hour after the administration of precursors, the radioactivity into the retina was high and the incorporation of [3H]glycerol and [14C]palmitate increased until 12 hr and 24 hr, respectively. The incorporation of [14C]linoleate reached a maximum on the second day. The phospholipids of LGB and SC were intensively labeled after 4–8 hr, and their radioactivity increased up to the 10th day after injection, independent of the precursor employed. The results obtained indicate that the labeled hydrophilic and hydrophobic precursors used were actively incorporated into the retina. The phospholipids were later transported at a rapid rate along the optic pathway.A preliminary report of this study has been presented at the Satellite ISN Meeting, Istanbul, September 8–10, 1979.  相似文献   

18.
A suite of spin-state-selective excitation (S3E) NMR experiments for the measurements of small one-bond (13C-13C, 15N-13C) and two-bond (1H-13C, 1H-15N) coupling constants in 13C,15N labeled purine and pyrimidine bases is presented. The incorporation of band-selective shaped pulses, elimination of the cross talk between and sub-spectra, and accuracy and precision of the proposed approach are discussed. Merits of using S3E rather than /-half-filter are demonstrated using results obtained on isotopically labeled DNA oligonucleotides.  相似文献   

19.
Summary [ul-13C/15N]-l-tryptophan was prepared biosynthetically and its dynamic properties and intermolecular interaction with a complex of Escherichia coli trp-repressor and a 20 base-pair operator DNA were studied by heteronuclear isotope-edited NMR experiments. The resonances of the free and bound corepressor (l-Trp) were unambiguously identified from gradient-enhanced 15N–1H HSQC, 13C–1H HSQC, 13C-and 15N-edited 2D NOESY spectra. The exchange off-rate of the corepressor between the bound and free states was determined to be 3.4±0.52 s–1 at 45°C, almost three orders of magnitude faster than the dissociation of the protein-DNA complex. Examination of the experimental NOE buildup curves indicates that it may be desirable to use longer mixing times than would normally be used for a large molecule, in order to detect weak intermolecular NOEs in the presence of exchange. Intermolecular NOEs from bound corepressor to trp-repressor and DNA were analyzed with respect to the mechanism of ligand exchange. This analysis suggests that, in order for the ligand to diffuse out of the complex, there must be significant movement or breathing of the protein and/or DNA.Abbreviations NOESY nuclear Overhauser enhancement spectroscopy - HSQC heteronuclear single-quantum coherence - PFG pulsed field gradient - l-Trp l-tryptophan  相似文献   

20.
Relaxation parameters such as longitudinal relaxation are susceptible to artifacts such as spin diffusion, and can be affected by paramagnetic impurities as e.g. oxygen, which make a quantitative interpretation difficult. We present here the site-specific measurement of [1H]13C and [1H]15N heteronuclear rates in an immobilized protein. For methyls, a strong effect is expected due to the three-fold rotation of the methyl group. Quantification of the [1H]13C heteronuclear NOE in combination with 13C-R 1 can yield a more accurate analysis of side chain motional parameters. The observation of significant [1H]15N heteronuclear NOEs for certain backbone amides, as well as for specific asparagine/glutamine sidechain amides is consistent with MD simulations. The measurement of site-specific heteronuclear NOEs is enabled by the use of highly deuterated microcrystalline protein samples in which spin diffusion is reduced in comparison to protonated samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号