首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Golgi apparatus isolated from both rat liver and rat kidney have been characterized with respect to their neutral and phospholipid content and their phosphopipid composition and compared with mitochondria, rough endoplasmic reticulum and plasma membranes. In addition, the distribution of sulfatide in the subcellular fractions of rat kidney was determinich are rich in cholesterol esters and ubiquinone. Removal of about 75% of the cisternal contents of rat liver Golgi reduced its content of cholesterol esters but not of ubiquinone. The Golgi complex of liver most closely resembles endoplasmic reticulum in its phospholipid composition except for a higher content of sphingomyelin. Removal of most of the contents of the Golgi cisternae did not appreciably alter the phospholipid composition of the Golgi apparatus of liver. Goligi apparatus from kidney has a phospholipid composition which resembles liver Golgi much more closely than it does any other cell fraction from kidney. The sulfatide content of kidney Golgi, the cell fraction richest in this glycolipid, is about 14% of the total lipid present in this fraction. Sulfatide was present in plasma membranes, mitochondria and rough microsomes, but at about one-third the level found in Golgi. Sulfatide is the main glycosphingolipid present in all the cell fractions from kidney which were studied.  相似文献   

2.
The distribution of activities for synthesis of phosphatidylinositol among cell fractions from rat liver was determined. Activity was concentrated in endoplasmic reticulum; rough and smooth fractions were nearly equal. Golgi apparatus exhibited a biosynthetic rate 44% that of endoplasmic reticulum. Plasma membranes and mitochondrial fractions were only 6% as active as endoplasmic reticulum. Thus, endoplasmic reticulum and Golgi apparatus fractions from rat liver catalyze the net synthesis of phosphatidylinositol in vitro, whereas plasma membrane and mitochondrial fractions do not.  相似文献   

3.
1. The galactosylhydroxylysylglucosyltransferase (GGT) specific to collagen is located in the RER (rough endoplasmic reticulum), SER (smooth endoplasmic reticulum) and Golgi apparatus for the chick embryo liver. 2. The UDP-glucose collagen glucosyltransferase activities in chick embryo liver were solubilized by Nonidet P-40. 3. The mechanism of collagen glucosyltransferase reaction was studied with enzyme preparation of Golgi apparatus CF2, smooth endoplasmic reticulum CF4 and rough endoplasmic reticulum CF8. 4. For the three fractions, data obtained in experiments were consistent with a sequential ordered mechanism in which the substrates are bound to the enzyme in the following order: Mn2+, collagen and UDP-glucose substrate, with different values for Km and Vmax.  相似文献   

4.
We have investigated the subcellular location and regulation of hepatic bilirubin UDP-glucuronyltransferase, which has been presumed to be located largely in the smooth endoplasmic reticulum. Purity of subcellular membrane fractions isolated from rat liver was assessed by electron microscopy and marker enzymes. Bilirubin UDP-glucuronyltransferase activity was measured by radiochemical assay using a physiologic concentration of [14C]bilirubin, and formation rates of bilirubin diglucuronide and monoglucuronides (C-8 and C-12 isomers) were determined. Activity of the enzyme was widely distributed in subcellular membranes, the majority being found in smooth and rough endoplasmic reticulum, with small amounts in nuclear envelope and Golgi membranes. No measurable activity was found in plasma membranes or in cytosol. Synthesis of bilirubin diglucuronide as a percentage of total conjugates and the ratio of C-8/C-12 bilirubin monoglucuronide isomers formed were comparable in all membranes, suggesting that the same enzyme is present in all locations. However, the regulation of bilirubin UDP-glucuronyltransferase activity differed among intracellular membranes; enzyme activity measured in the presence of the allosteric effector uridine 5'-diphospho-N-acetylglucosamine exhibited latency in smooth endoplasmic reticulum and Golgi membranes, but not in rough endoplasmic reticulum and nuclear envelope. Since rough membranes comprise 60% of hepatocyte endoplasmic reticulum and bilirubin UDP-glucuronyltransferase activity in vitro is maximal in this membrane fraction under presumed physiologic conditions, it is likely that the rough endoplasmic reticulum represents the major site of bilirubin glucuronidation in hepatocytes.  相似文献   

5.
The subcellular distribution of the enzyme catalysing the conversion of retinyl phosphate and GDP-[14C]mannose into [14C]mannosyl retinyl phosphate was determined by using subcellular fractions of rat liver. Purity of fractions, as determined by marker enzymes, was 80% or better. The amount of mannosyl retinyl phosphate formed (pmol/min per mg of protein) for each fraction was: rough endoplasmic reticulum 0.48 +/- 0.09 (mean +/- S.D.); smooth membranes (consisting of 60% smooth endoplasmic reticulum and 40% Golgi apparatus), 0.18 +/- 0.03; Golgi apparatus, 0.13 +/- 0.03; and plasma membrane 0.02.  相似文献   

6.
A Golgi-rich fraction that contains both uridine diphosphogalactose: N-acetylglucosamine galactosyltransferase activity and 3′-phosphoadenosine-5′-phosphosulfate:cerebroside sulfotransferase activity has been isolated from rat kidney. Both activities are increased about 80-fold in the Golgi fraction compared to the homogenate. Little or no galactosyltransferase or sulfotransferase activity was found in purified nuclei, mitochondria, rough endoplasmic reticulum, plasma membranes and supernatant. The results indicate that both galactosyltransferase and sulfotransferase are localized in Golgi apparatus from rat kidney. This is the first evidence that Golgi apparatus functions to modify a lipid component of the cell.  相似文献   

7.
Adenylate cyclase activity was detected in plasma membranes, Golgi apparatus, and endoplasmic reticulum from rat liver. Adenylate cyclase activities of purified membranes were determined biochemically by two methods. In one, the synthesis of radioactive cyclic AMP from ATalpha32P was monitored. In the other, the synthesis of cyclic AMP was quantitiated using a protein which specifically binds cyclic AMP. The enzyme activity was responsive to activation by both glucagon and sodium fluoride although differences in degree of activation were noted comparing plasma membrane, Golgi apparatus, and endoplasmic reticulum. Cytochemical studies, using both whole tissue and purified cell fractions and conducted in parallel, confirmed the biochemical results. Deposition of lead phosphate, enhanced by glucagon and NaF with samples incubated with appropriate substrates, was not restricted to plasma membranes of hepatocytes but was present in intracellular membranes as well. Adenylate cyclase of rat hepatocytes appears more widely distributed among internal membranes than previously recognized.  相似文献   

8.
The hepatic subcellular distribution of apolipoprotein B (apo B) was studied quantitatively by using an enzyme immunoassay developed for apo B and by immunoadsorption-precipitation of [3H]leucine-labelled apo B. Over 50% (of 0.59 microgram/mg protein) of the apo B was located in the microsomal fraction. Further subfractionation of the microsomes revealed that 47% of the microsomal apo B was in the Golgi apparatus, while another 43% was associated with the rough endoplasmic reticulum. The smooth endoplasmic reticulum accounted for only 4% of the total. When rat livers were labelled with [3H]leucine for 10 min, the rough endoplasmic reticulum accounted for 80% of the total immunoadsorbed precipitable apo B radioactivity while the smooth accounted for 20%, with no contribution from the Golgi. However, only 8.7% of the total radioactive immunoadsorbed precipitable apo B was lipoprotein-associated, the remainder being membrane-bound. Lipoprotein-associated apo B radioactivity in the smooth endoplasmic reticulum accounted for 40%, with the rough contribution attributed at 50% and the Golgi at 9%. We concluded that (a) there are two major pools of apo B in rat liver microsomes; (b) although the apo B mass may be negligible in the smooth endoplasmic reticulum, the latter does play a role in lipoprotein biogenesis. The possible function of apo B associated with membranes of the microsomes is also discussed.  相似文献   

9.
beta-Hexosaminidase B purified from human fibroblast secretions was used as a ligand to study phosphomannosyl-enzyme receptors in membranes from rat tissues. Enzyme binding to rat liver membranes was saturable, competitively inhibited by mannose 6-phosphate, not dependent on calcium, and destroyed by prior treatment of the hexosaminidase with either alkaline phosphatase or endoglycosidase H. Most (90%) of the phosphomannosyl-enzyme receptors were found in endoplasmic reticulum, Golgi apparatus, and lysosomes; 9.5% in the plasma membrane, and less than 1% in nuclei and mitochondria. Receptors were vesicle-enclosed in all fractions except plasma membrane. Receptors in the endoplasmic reticulum apparently were occupied by endogenous ligands, but most receptors in lysosomes and plasma membrane were unoccupied. Most of the endogenous beta-hexosaminidase was in lysosomes and was released from vesicles by detergent treatment. Displacement of the residual receptor-bound endogenous beta-hexosaminidase (mostly in endoplasmic reticulum and Golgi apparatus) from detergent-treated membranes by mannose 6-phosphate released high uptake enzyme with properties expected for phosphomannosyl-enzymes. Mannose 6-phosphate-inhibitable enzyme receptor activity was found in nine rat organs and correlated roughly with their lysosomal enzyme content. These data support a general model for lysosomal enzyme transport in which the phosphomannosyl-enzyme receptor acts as a vehicle for delivery of newly synthesized acid hydrolases from the endoplasmic reticulum to lysosomes.  相似文献   

10.
1. Antibodies have been prepared to rat hepatic cytochrome P-450 and their specificity demonstrated. These antibodies have been used to investigate the biosynthesis of cytochrome P-450 in vitro and in situ in various components of the endoplasmic reticulum. 2. A preparation of heavy rough endoplasmic reticulum translocates proteins newly biosynthesized in vitro vectorially into the luminal space and these are released by low concentrations of deoxycholate. A significant proportion of the radioactivity found in this released fraction is incorporated into cytochrome P-450. 3. Following incorporation of [14C]leucine by perfused rat liver, radioactively labelled cytochrome P-450 can be found in the intrascisternal content of heavy rough, light rough and smooth endopalsmic reticulum and also in a solublized Golgi preparation. 4. We suggest that at least part of the newly biosynthesized cytochrome P-450 is translocated into the intracisternal space of the rough endoplasmic and then passes through the other components of the endoplasmic reticulum before insertion at its ultimate membrane locus.  相似文献   

11.
12.
This study was conducted to follow as a function of time the activity of gamma-glutamyltransferase in the various membranes of rat liver cells after a single dose of phenobarbital (PB) (75 mg kg-1 body weight). Gamma-glutamyltransferase induction was maximal 24 h after PB treatment in both the rough endoplasmic reticulum and the plasma membranes. This pattern of induction differed from that of some drug metabolizing enzymes. While total cytochrome P-450 content was enhanced mainly in endoplasmic reticulum until 48 h after PB treatment, UDP-glucuronosyltransferase activity was not greatly altered by PB under the same conditions. The comparison of two-dimensional electrophoretic polypeptide profiles of each subcellular membrane isolated from control and phenobarbital-treated rats revealed important variations induced by PB. In plasma membranes, the heaviest subunit (apparent Mr = 60 x 10(3)) of hepatic gamma-glutamyltransferase was provisionally identified as a collection of polypeptide which differ only by their pI. The concentration of these polypeptides was smaller in the endoplasmic reticulum where they were of lower apparent molecular mass. This suggests that the gamma-glutamyltransferase precursor is already processed at the level of the endoplasmic reticulum but it is still not completely mature or glycosylated. Five days of continuous PB treatment induced by appearance of new gamma-glutamyltransferase isoforms in plasma membranes. We demonstrate that after a single injection of PB, gamma-glutamyltransferase activity increases simultaneously with some drug-metabolizing enzymes, such as total cytochrome P-450 but not with others, such as UDP-glucuronosyltransferases.  相似文献   

13.
The sites of synthesis of proteins and their subsequent migration in rat liver have been studied during a 75 min period after labeling of liver-slice proteins by exposure to leucine-H3 for 2 min. Incorporation of the label into protein began after 1 min and was maximal by 4 min. Electron microscopic radioautography showed that synthesis of proteins in hepatocytes occurs mainly on ribosomes, particularly those in rough endoplasmic reticulum and, to some extent, in nuclei and mitochondria. Most of the newly formed proteins leave the endoplasmic reticulum in the course of 40 min, and concurrently labeled proteins appear in Golgi bodies, smooth membranes, microbodies, and lysosomes. A likely pathway for the secretion of some or all plasma proteins is from typical rough endoplasmic reticulum to a zone of reticulum which is partially coated with ribosomes, to the Golgi apparatus, and thence to the cell periphery. The formation of protein by reticuloendothelial cells was measured and found to be about 5% of the total protein formed by the liver.  相似文献   

14.
We have recently described the occurrence of integral membrane glycoproteins in rat liver smooth and rough endoplasmic reticulum with O-N-acetylglucosamine facing the cytosolic and luminal sides of the membrane (Abeijon, C., and Hirschberg, C. B. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1010-1014). We now report that integral membrane glycoproteins with cytosolic facing O-N-acetylglucosamine also occur in membranes of rat liver Golgi apparatus. This was determined following incubation of vesicles from the Golgi apparatus, which were sealed and of the same membrane topographical orientation as in vivo, with UDP-[14C]galactose and saturating amounts of bovine milk galactosyltransferase. This enzyme does not enter the lumen of the vesicles and specifically catalyzes the addition of galactose, in a beta 1-4 linkage, to terminal N-acetylglucosamine. Under these conditions, galactose was transferred to a glycoprotein of molecular mass of 92 kDa. This protein was insoluble in sodium carbonate, pH 11.5, conditions under which integral membrane proteins remain membrane bound and was insensitive to treatment with peptide:N-glycosidase F. beta Elimination and chromatography showed that radiolabeled galactose was part of a disaccharide which was characterized as Gal beta 1-4GlcNAcitol. This glycoprotein is specific of the Golgi apparatus membrane. Intrinsic membrane glycoproteins with this unusual carbohydrate membrane orientation thus occur in the endoplasmic reticulum and Golgi apparatus of rat liver.  相似文献   

15.
In primary cultures of new-born rat liver tissue, albumin and frbrinogen, two proteins normally synthesized by the liver and secreted into plasma were demonstrated by specific antibodies labelled with peroxidase in about 50 and 70% of the hepatocytes; these proteins were not demonstrated in the other types of cells, in particular fibroblasts, present in primary cultures. These two proteins were detected on the ribosomes of the rough endoplasmic reticulum and were also present in the lumina of the rough and smooth endoplasmic reticulum and in the Golgi apparatus. It is concluded that
1. 1. In primary cultures of liver tissue, only the hepatocytes synthesize albumin and fibrinogen.
2. 2. Proliferating cultured hepatocytes are able to synthesize albumin and fibrinogen.
3. 3. The presence of detectable albumin and fibrinogen in the lumina of the rough and smooth endoplasmic reticulum and in the Golgi apparatus in hepatocytes of primary cultures and their absence in the lumina of the rough and smooth endoplasmic reticulum and in the Golgi apparatus in the hepatocytes of adult rat liver might indicate an alteration in the translocation of albumin and fibrinogen through these organelles in cultured hepatocytes.
  相似文献   

16.
Fractions enriched in secretory vesicles were obtained from lactating bovine mammary tissue by a straightforward procedure involving gentle homogenization and centrifugation in isotonic milk salt solution containing Ficoll. Secretory vesicle-rich fractions could also be obtained from lactating rat mammary gland by this procedure. With rats, yields of vesicles were substantially increased by administration of colchicine or thioglucose to animals several hours before sacrifice. Isolated fractions were enriched in lactose and consisted predominantly of 0.2–1.2 μm diameter vesicles, many of which contained casein micelles. Enzymatic, compositional and morphological examination revealed vesicle preparations to be largely free of contamination by rough endoplasmic reticulum, mitochondria, nuclei, peroxisomes and lysosomes. Specific activity of several marker enzymes of the secretory vesicle fraction were similar to, or intermediate between, Golgi apparatus and milk lipid globule membranes. Amounts of cholesterol and gangliosides in vesicle fractions approached levels found in plasma membranes. In distribution of major phospholipids, secretory vesicles were intermediate between Golgi apparatus and milk lipid globule membranes. The pattern of polypeptides of secretory vesicle membrane was qualitatively similar to that of Golgi apparatus membranes. While there were similarities between these polypeptide patterns and that of lipid globule membranes, the latter contained relatively more of certain polypeptides, particularly the internal coat-associated polypeptides of the globule membrane. These observations are discussed in relation to the endomembrane hypothesis and the origin of the membrane of milk lipid globules.  相似文献   

17.
As a first step in determining the molecular mechanism of membrane fusion stimulated by GTP in rough endoplasmic reticulum (RER), we have looked for GTP-binding proteins. Rough microsomes from rat liver were treated for the release of ribosomes, and the membrane proteins were separated by SDS/polyacrylamide-gel electrophoresis. The polypeptides were then blotted on to nitrocellulose sheets and incubated with [alpha-32P]GTP [Bhullar & Haslam (1987) Biochem. J. 245, 617-620]. A doublet of polypeptides (23 and 24 kDa) was detected in the presence of 2 microM-MgCl2. Binding of [alpha-32P]GTP was blocked by 1-5 mM-EDTA, 10-10,000 nM-GTP or 10 microM-GDP. Either guanosine 5'-[gamma-thio]triphosphate or guanosine 5'-[beta gamma-imido]triphosphate at 100 nM completely inhibited binding, but ATP, CTP or UTP at 10 mciroM did not. Pretreatment of microsomes by mild trypsin treatment (0.5-10 micrograms of trypsin/ml, concentrations known not to affect microsomal permeability) led to inhibition of [alpha-32P]GTP binding, suggesting a cytosolic membrane orientation for the GTP-binding proteins. Two-dimensional gel-electrophoretic analysis revealed the 23 and 24 kDa [alpha-32P]GTP-binding proteins to have similar acid isoelectric points. [alpha-32P]GTP binding occurred to similar proteins of rough microsomes from rat liver, rat prostate and dog pancreas, as well as to a 23 kDa protein of rough microsomes from frog liver, but occurred to distinctly different proteins in a rat liver plasma-membrane-enriched fraction. Thus [alpha-32P]GTP binding has been demonstrated to two low-molecular-mass (approx. 21 kDa) proteins in the rough endoplasmic reticulum of several varied cell types.  相似文献   

18.
《The Journal of cell biology》1984,99(6):1917-1926
To study the assembly of newly synthesized lipids with apoprotein A1, we administered [2-3H]glycerol to young chickens and determined the hepatic intracellular sites of lipid synthesis and association of nascent lipids with apoprotein A1. [2-3H]glycerol was rapidly incorporated into hepatic lipids, reaching maximal levels at 5 min, and this preceded the appearance of lipid radioactivity in the plasma. The liver was fractionated into rough and smooth endoplasmic reticulum and Golgi cell fractions. The isolated cell fractions were further subfractionated into membrane and soluble (content) fractions by treatment with 0.1 M Na2CO3, pH 11.3. At various times, the lipid radioactivity was measured in each of the intracellular organelles, in immunoprecipitable apoprotein A1, and in materials that floated at buoyant densities similar to those of plasma lipoproteins. Maximal incorporation occurred at 1 min in the rough endoplasmic reticulum, at 3-5 min in the smooth endoplasmic reticulum, and at 5 min in the Golgi cell fractions. The majority (66-93%) of radioactive glycerol was incorporated into triglycerides with smaller (4-27%) amounts into phospholipids. About 80% of the lipid radioactivity in the endoplasmic reticulum and 70% of that in the Golgi cell fractions was in the membranes. The radioactive lipids in the content subfraction were distributed in various density classes with most nascent lipids floating at a density less than or equal to 1.063 g/ml. Apoprotein A1 from the Golgi apparatus, obtained by immunoprecipitation, contained sixfold more nascent lipids than did that from the endoplasmic reticulum. These data indicate that [2-3H]glycerol is quickly incorporated into lipids of the endoplasmic reticulum and the Golgi cell fractions, that most of the nascent lipids are conjugated with apoproteins A1 in the Golgi apparatus, and that very little association of nascent lipid to apoprotein A1 occurs in the endoplasmic reticulum.  相似文献   

19.
The subcellular localization in rat liver cells of retinol-binding protein (RBP), prealbumin, ceruloplasmin, albumin, and class I transplantation antigen chains was investigated by radioimmunoassay determinations. The concentration of RBP was high in the rough and smooth endoplasmic reticulum (SER). The relative concentrations of prealbumin, ceruloplasmin and albumin were similar in the endoplasmic reticulum fractions and in the Golgi fraction. Neither of the proteins were found in significant amounts in the post-microsomal supernatant nor in the plasma membrane. The concentrations of the class I transplantation antigen chains were higher in the Golgi fraction than in the endoplasmic reticulum fractions. In the rough endoplasmic reticulum (RER) fraction ceruloplasmin and the class I antigens partially interact with high-molecular weight (MW) components, presumably membrane-bound glycosyltransferases. RBP, prealbumin and albumin seemed to be present in free form within the microsomal lumen. In vitamin A deficiency the RBP and to a lesser extent the prealbumin concentrations in the endoplasmic reticulum fractions were significantly increased, as compared to fractions from normal livers. This suggests that the presence of vitamin A is a prerequisite for the transport of RBP from the endoplasmic reticulum to the Golgi complex. The intracellular concentrations of albumin and ceruloplasmin were not significantly altered by vitamin A deficiency. In contrast, the amounts of the class I antigen heavy chains were found to be increased.  相似文献   

20.
BHK-21 cells, infected with Semliki Forest virus, were treated with cycloheximide to stop further synthesis but not intracellular transport of the viral membrane proteins. These proteins were then localized in thin, frozen sections using specific antibodies labelled indirectly with ferritin or gold. Quantitation of the labelling on micrographs showed the movement of spike proteins from the rough endoplasmic reticulum and through the Golgi stacks. The spike proteins spent about 15 minutes in each of these intracellular organelles and their final destination was the plasma membrane. Parallel biochemical studies showed that most of the simple oligosaccharides on the viral spike proteins were modified to the complex form at the same time as these membrane proteins were passing through the Golgi stacks. Cell fractionation studies revealed the same pattern; the proteins passed from the rough endoplasmic reticulum to the plasma membrane via a vesicle fraction isolated according to its content of galactosyl transferase. Independent evidence that this fraction was derived at least in part from the Golgi complex in BHK cells was obtained by showing that it reacted specifically with an antibody raised to rat liver Golgi membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号