首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Baccatin III, an intermediate of Taxol biosynthesis and a useful precursor for semisynthesis of the anti-cancer drug, is produced in yew (Taxus) species by a sequence of 15 enzymatic steps from primary metabolism. Ten genes encoding enzymes of this extended pathway have been described, thereby permitting a preliminary attempt to reconstruct early steps of taxane diterpenoid (taxoid) metabolism in Saccharomyces cerevisiae as a microbial production host. Eight of these taxoid biosynthetic genes were functionally expressed in yeast from episomal vectors containing one or more gene cassettes incorporating various epitope tags to permit protein surveillance and differentiation of those pathway enzymes of similar size. All eight recombinant proteins were readily detected by immunoblotting using specific monoclonal antibodies and each expressed protein was determined to be functional by in vitro enzyme assay, although activity levels differed considerably between enzyme types. Using three plasmids carrying different promoters and selection markers, genes encoding five sequential pathway steps leading from primary isoprenoid metabolism to the intermediate taxadien-5alpha- acetoxy-10beta-ol were installed in a single yeast host. Metabolite analysis showed that yeast isoprenoid precursors could be utilized in the reconstituted pathway because products accumulated from the first two engineered pathway steps (leading to the committed intermediate taxadiene); however, a pathway restriction was encountered at the first cytochrome P450 hydroxylation step. The means of overcoming this limitation are described in the context of further development of this novel approach for production of Taxol precursors and related taxoids in yeast.  相似文献   

3.
The Taxol biosynthetic pathway, arising from the primary isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate in yew (Taxus), consists of approximately twenty steps, at least nine of which are thought to be cytochrome P450-mediated oxygenations. Several oxygenases involved in the early hydroxylation steps of the pathway have been identified and the corresponding genes have been cloned; however, defining the enzymes and their genes responsible for oxygenations in the central portion of the pathway is more difficult because neither the exact sequence of reactions nor the relevant intermediates are known. A surrogate substrate, (+)-taxusin (taxa-4(20),11(12)-dien-5alpha,9alpha,10beta,13alpha-tetraol tetraacetate), that was previously employed in the isolation of a taxoid 7beta-hydroxylase, was used here to functionally screen a family of cytochrome P450 oxygenases originating from a Taxus cell EST library. This in vivo screen in yeast led to the identification of a 1488bp cDNA clone (encoding a 495 residue protein) that was capable of producing 2alpha-hydroxytaxusin from taxusin with a K(m) value of 10.5 +/- 2.7 microM and k(cat) of about 0.05 s(-1) for the surrogate substrate. This structurally typical cytochrome P450 resembles most closely the previously isolated taxoid 7beta-hydroxylase, which also uses taxusin as a substrate, and both 2alpha- and 7beta-hydroxylases are capable of the reciprocal conversion of their respective pentaol tetraacetate products to the common hexaol tetraacetate. This C2-hydroxylase would appear to mediate the mid-pathway functionalization of the C2-position of the taxane core that ultimately bears a benzoyl group as an important Taxol pharmacophore. Overexpression of this cytochrome P450 taxoid 2alpha-hydroxylase in Taxus cells may improve Taxol yields and could prove useful in the production of other 2alpha-hydroxy taxoids as starting materials for subsequent acylation at this position.  相似文献   

4.
To maximize redox coupling efficiency with recombinant cytochrome P450 hydroxylases from yew (Taxus) species installed in yeast for the production of the anticancer drug Taxol, a cDNA encoding NADPH:cytochrome P450 reductase from T. cuspidata was isolated. This single-copy gene (2,154 bp encoding a protein of 717 amino acids) resembles more closely other reductases from gymnosperms (approximately 90% similarity) than those from angiosperms (<80% similarity). The recombinant reductase was characterized and compared to other reductases by heterologous expression in insect cells and was shown to support reconstituted taxoid 10beta-hydroxylase activity with an efficiency comparable to that of other plant-derived reductases. Coexpression in yeast of the reductase along with T. cuspidata taxoid 10beta-hydroxylase, which catalyzes an early step of taxoid biosynthesis, demonstrated significant enhancement of hydroxylase activity compared to that supported by the endogenous yeast reductase alone. Functional transgenic coupling of the Taxus reductase with a homologous cytochrome P450 taxoid hydroxylase represents an important initial step in reconstructing Taxol biosynthesis in a microbial host.  相似文献   

5.
6.
Gibberellins (GAs) are tetracyclic diterpenoid phytohormones that were first identified as secondary metabolites of the fungus Fusarium fujikuroi (teleomorph, Gibberella fujikuroi). GAs were also found in the cassava pathogen Sphaceloma manihoticola, but the spectrum of GAs differed from that in F. fujikuroi. In contrast to F. fujikuroi, the GA biosynthetic pathway has not been studied in detail in S. manihoticola, and none of the GA biosynthetic genes have been cloned from the species. Here, we present the identification of the GA biosynthetic gene cluster from S. manihoticola consisting of five genes encoding a bifunctional ent-copalyl/ent-kaurene synthase (CPS/KS), a pathway-specific geranylgeranyl diphosphate synthase (GGS2), and three cytochrome P450 monooxygenases. The functions of all of the genes were analyzed either by a gene replacement approach or by complementing the corresponding F. fujikuroi mutants. The cluster organization and gene functions are similar to those in F. fujikuroi. However, the two border genes in the Fusarium cluster encoding the GA4 desaturase (DES) and the 13-hydroxylase (P450-3) are absent in the S. manihoticola GA gene cluster, consistent with the spectrum of GAs produced by this fungus. The close similarity between the two GA gene clusters, the identical gene functions, and the conserved intron positions suggest a common evolutionary origin despite the distant relatedness of the two fungi.  相似文献   

7.
8.
9.
The production of the anticancer drug Taxol in Taxus (yew) cell cultures is often accompanied by the formation of side-route polyoxygenated taxoid metabolites bearing a 14beta-hydroxyl group. The recent acquisition of several new semisynthetic taxoid intermediates enabled the screening of a family of Taxus cytochrome P450 cDNA clones for the 14beta-hydroxylase and additional taxoid oxygenases. The candidate cytochrome P450 clones were functionally expressed in yeast and tested by in vivo feeding of radiolabeled 5alpha-acetoxy-10beta-hydroxy taxadiene and 5alpha,13alpha-dihydroxy taxadiene. One clone efficiently and specifically transformed the 5alpha-acetoxy-10beta-ol, but not the 5alpha,13alpha-diol, to a more polar product with the chromatographic properties of a taxoid triol monoacetate, and the identity of this product was confirmed by spectroscopic means as 5alpha-acetoxy-10beta,14beta-dihydroxy taxadiene. Microsome preparation from the transformed yeast allowed characterization of this new hydroxylase, which was shown to resemble other cytochrome P450 taxoid hydroxylases with pH optimum at 7.5 and a K(m) value for the taxoid substrate of about 50 microM. Because Taxol is unsubstituted at C14, the 14beta-hydroxylase cannot reside on the pathway to the target drug but rather appears to be responsible for diversion of the pathway to 14-hydroxy taxoids that are prominent metabolites of Taxus cell cultures. Manipulation of this hydroxylase gene could permit redirection of the pathway to increase flux toward Taxol and could allow the preparation of 13alpha,14beta-hydroxy taxoids as new therapeutic agents.  相似文献   

10.
The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis.  相似文献   

11.
12.
13.
14.
Several genes in the trichothecene biosynthetic pathway of Fusarium sporotrichioides have been shown to reside in a gene cluster. Sequence analysis of a cloned DNA fragment located 3.8 kb downstream from TRI5 has led to the identification of the TRI11 gene. The nucleotide sequence of TRI11 predicts a polypeptide of 492 residues (Mr = 55,579) with significant similarity to members of the cytochrome P-450 superfamily. TRI11 is most similar to several fungal cytochromes P-450 (23 to 27% identity) but is sufficiently distinct to define a new cytochrome P-450 gene family, designated CYP65A1. Disruption of TRI11 results in an altered trichothecene production phenotype characterized by the accumulation of isotrichodermin, a trichothecene pathway intermediate. The evidence suggests that TRI11 encodes a C-15 hydroxylase involved in trichothecene biosynthesis.  相似文献   

15.
16.
Taxol is a well-known effective anticancer compound. Due to the inability to synthesize sufficient quantities of taxol to satisfy commercial demand, a biotechnological approach for a large-scale cell or cell-free system for its production is highly desirable. Several important genes in taxol biosynthesis are currently still unknown and have been shown to be difficult to isolate directly from Taxus, including the gene encoding taxoid 9α-hydroxylase. Ginkgo biloba suspension cells exhibit taxoid hydroxylation activity and provides an alternate means of identifying genes encoding enzymes with taxoid 9α-hydroxylation activity. Through analysis of high throughput RNA sequencing data from G. biloba, we identified two candidate genes with high similarity to Taxus CYP450s. Using in vitro cell-free protein synthesis assays and LC–MS analysis, we show that one candidate that belongs to the CYP716B, a subfamily whose biochemical functions have not been previously studied, possessed 9α-hydroxylation activity. This work will aid future identification of the taxoid 9α-hydroxylase gene from Taxus sp.  相似文献   

17.
18.
19.
20.
Nine biological species, or mating populations (MPs), denoted by letters A to I, and at least 29 anamorphic Fusarium species have been identified within the Gibberella fujikuroi species complex. Members of this species complex are the only species of the genus Fusarium that contain the gibberellin (GA) biosynthetic gene cluster or at least parts of it. However, the ability of fusaria to produce GAs is so far restricted to Fusarium fujikuroi, although at least six other MPs contain all the genes of the GA biosynthetic gene cluster. Members of Fusarium proliferatum, the closest related species, have lost the ability to produce GAs as a result of the accumulation of several mutations in the coding and 5′ noncoding regions of genes P450-4 and P450-1, both encoding cytochrome P450 monooxygenases, resulting in metabolic blocks at the early stages of GA biosynthesis. In this study, we have determined additional enzymatic blocks at the first specific steps in the GA biosynthesis pathway of F. proliferatum: the synthesis of geranylgeranyl diphosphate and the synthesis of ent-kaurene. Complementation of these enzymatic blocks by transferring the corresponding genes from GA-producing F. fujikuroi to F. proliferatum resulted in the restoration of GA production. We discuss the reasons for Fusarium species outside the G. fujikuroi species complex having no GA biosynthetic genes, whereas species distantly related to Fusarium, e.g., Sphaceloma spp. and Phaeosphaeria spp., produce GAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号