首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Priming of human neutrophils with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by treatment with formyl-methionyl-leucyl-phenylalanine (fMLP) stimulates cells in a physiologically relevant manner with modest 5-lipoxygenase activation and formation of leukotrienes. However, pretreatment of neutrophils with thimerosal, an organomercury thiosalicylic acid derivative, led to a dramatic increase (>50-fold) in the production of leukotriene B(4) and 5-hydroxyeicosatetraenoic acid, significantly higher than that observed after stimulation with calcium ionophore A23187. Little or no effect was observed with thimerosal alone or in combination with either GM-CSF or fMLP. Elevation of [Ca(2+)](i) induced by thimerosal in neutrophils stimulated with GM-CSF/fMLP was similar but more sustained compared with samples where thimerosal was absent. However, [Ca(2+)](i) was significantly lower compared with calcium ionophore-treated cells, suggesting that a sustained calcium rise was necessary but not sufficient to explain the effects of this compound on the GM-CSF/fMLP-stimulated neutrophil. Thimerosal was found to directly inhibit neutrophil lysophospholipid:acyl-CoA acyltransferase activity at the doses that stimulate leukotriene production, and analysis of lysates from neutrophil preparations stimulated in the presence of thimerosal showed a marked increase in free arachidonic acid, supporting the inhibition of the reincorporation of this fatty acid into the membrane phospholipids as a mechanism of action for this compound. The dramatic increase in production of leukotrienes by neutrophils when a physiological stimulus such as GM-CSF/fMLP is employed in the presence of thimerosal suggests a critical regulatory role of arachidonate reacylation that limits leukotriene biosynthesis in concert with 5-lipoxygenase and cytosolic phospholipase A(2)alpha activation.  相似文献   

2.
3.
Resident peritoneal macrophages incubated with 3.5 x 10(-7) M Calcium ionophore A23187 in tumor cell growth medium (TGM) release large amounts of leukotriene (LT)E4 and an unidentified 5-lipoxygenase product, whereas A23187-stimulated macrophages produce in serum free medium LTD4, predominately. LTC4 and 3H-LTC4 incubated for 20 min at 37 degree C in serum containing TGM, convert into LTE4 and 3H-LTE4, respectively. Thus, LTC4 released from A23187-stimulated macrophages is an intermediate in TGM which rapidly converts into LTE4, probably because of the presence of gamma-glutamyl transpeptidase and cystenylglycinase in TGM. Macrophages express antitumor cytostatic activity towards P815 cells (49-53%) in a cocultured ratio (macrophage: tumor cell) 2:1 when stimulated with 3.5 x 10(-7) M A23187 in TGM. The 5-lipoxygenase inhibitor AA861 reverses the cytostatic activity by 42-58% and it inhibits also the formation of A23187-induced 5-lipoxygenase products from macrophages. Restoration of 38% macrophage- antitumor cytostatic activity by exogenous LTC4 (10(-8) M) indicates that LTC4 is an essential 5-lipoxygenase intermediate in the pathway of required signals underlying A23187-induced macrophage antitumor cytostatic activity. Macrophages not stimulated by A23187 do not express cytostatic activity in the presence of LTC4. This implies that besides LTC4, increased cytosolic [Ca2+] is required for A23187 induction of macrophage cytostatic activity.  相似文献   

4.
Activation of polymorphonuclear neutrophils (PMNL) leads to the release of arachidonate from cellular phospholipids via a phospholipase A2, and conversion of products of the 5-lipoxygenase pathway. Evidence to date indicates the dietary vitamin E ((R,R,R)-alpha-tocopherol) can influence both cyclooxygenase and phospholipase A2 activities and that the effect of this vitamin is cell/tissue specific. The present study was undertaken in order to examine the effects of varying dietary tocopherol on PMNL tocopherol content and 5-lipoxygenase product profile using the ionophore A23187 as stimulant in the presence and absence of exogenous arachidonate. Feeding semi-purified diets containing 0, 30 or 3000 ppm of (R,R,R)-alpha-tocopherol acetate to weanling rats for 17 weeks resulted in a dose-related enrichment of PMNL tocopherol. Stimulation of PMNL elicited a significant and rapid loss of tocopherol. When PMNL were stimulated with A23187 alone, the synthesis of 5-HETE, LTB4 and 19-hydroxy-LTB4 was decreased in proportion to increasing dietary tocopherol concentrations. However, when exogenous arachidonate was provided with A23187, intermediate amounts of dietary tocopherol (30 ppm) still suppressed the formation of 5-lipoxygenase products, but high doses (3000 ppm) did not have any additional inhibitory effect. This differential response to high concentrations of vitamin E in the presence and absence of exogenous arachidonate highly suggest that at these concentrations, tocopherol may act principally at the level of substrate release whereas at lower concentrations, 5-lipoxygenase is inhibited. Data from this study demonstrated that attenuation of the formation of 5-lipoxygenase products in PMNL can be achieved by dietary vitamin E enrichment.  相似文献   

5.
Alveolar macrophages release greater amounts of leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) after A23187 stimulation than do blood monocytes. The mechanisms for this enhanced 5-lipoxygenase activity in alveolar macrophages are unknown. In these studies, we determined whether alveolar macrophages have greater amounts of the enzyme 5-lipoxygenase than do blood monocytes. We confirmed that alveolar macrophages released greater amounts of LTB4 after A23187 stimulation than did equivalent numbers of blood monocytes. In both the presence and absence of A23187, alveolar macrophages had greater amounts of immunoreactive 5-lipoxygenase, determined by Western analysis, on a per cell and a per protein basis than did blood monocytes. The amounts of 5-lipoxygenase enzyme in the cells roughly correlated with the amounts of LTB4 released by both types of cells. These observations suggest that A23187 stimulates alveolar macrophages to release greater amounts of LTB4 and 5-HETE than blood monocytes, in part, due to the greater amounts of 5-lipoxygenase.  相似文献   

6.
In rat alveolar macrophages treated with 100 microM t-butyl hydroperoxide (tBOOH), leukotriene B4 (LTB4) synthesis was significantly lower than the basal level while levels of cyclooxygenase pathway products were increased. LTB4, 5,6-dihydroxyeicosatetraenoic acid (5,6-DiHETEs), and 5-hydroxyeicosatetraenoic acid (5-HETE) production in macrophages was significantly stimulated by 2 microM A23187, but this was suppressed 40% by simultaneous addition of 10 microM tBOOH and completely abolished by 100 microM tBOOH. Basal and A23187-stimulated macrophage production of chemotactic agents were similarly suppressed by addition of tBOOH; this effect paralleled depression of cellular LTB4 synthesis. In contrast to the significant depression of A23187-stimulated formation of 5-lipoxygenase products by 10 microM tBOOH, cellular adenosine triphosphate (ATP) was unchanged. Macrophages pretreated with KCN led to a 42% decline in ATP levels; however, LTB4, 5,6-DiHETEs, and 5-HETE production in response to A23187 was not suppressed. The results indicate that inhibition of 5-lipoxygenase pathway products in macrophages treated with tBOOH did not occur by depletion of cellular ATP levels.  相似文献   

7.
The effects of an inhalation anesthetic, halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the formation of 5-lipoxygenase metabolites such as leukotriene B4, 5(S)-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-isomers of leukotriene B4 and leukotriene C4 were studied in human leukocytes stimulated with calcium ionophore A23187. Halothane inhibited the formation of all these metabolites dose dependently and the formation was restored by removal of the drug. The anesthetic also reversibly inhibited the release of [3H]arachidonic acid from neutrophils with a half-inhibition concentration of less than 0.19 mM. The formation of 5-lipoxygenase metabolites was not inhibited by the anesthetic when leukocytes were stimulated with the ionophore in the presence of exogenous arachidonic acid. These observations indicate that the inhibitory effect of halothane on the formation of 5-lipoxygenase metabolites in leukocytes is mainly due to the inhibition of arachidonic acid release.  相似文献   

8.
The sulfhydryl reactant N-ethylmaleimide (NEM) stimulates the release and cyclooxygenase metabolism of arachidonic acid in rat alveolar macrophages. Because both 5-lipoxygenation and leukotriene (LT) C4 synthesis represent sulfhydryl-dependent steps in the 5-lipoxygenase pathway, we examined the effect of NEM on 5-lipoxygenase, as well as cyclooxygenase, metabolism in resting and agonist-stimulated cells by reverse-phase high performance liquid chromatography and radioimmunoassay. NEM at 5-10 microM stimulated the synthesis of thromboxane, but not prostaglandin E2 or the 5-lipoxygenase products LTC4, LTB4, or 5-hydroxyeicosatetraenoic acid from endogenously released arachidonate. In the presence of exogenous fatty acid, however, NEM stimulated the synthesis of large quantities of LTB4. The effect of NEM on arachidonate metabolism stimulated by the calcium ionophore A23187 and the particulate zymosan was also investigated. NEM augmented arachidonate release and thromboxane synthesis stimulated by A23187 but inhibited A23187-induced LTC4 synthesis with an IC50 of approximately 4.3 microM. This inhibitory effect closely paralleled the ability of NEM to deplete intracellular glutathione (IC50 approximately 4.3 microM). Preincubation with the intracellular cysteine delivery agent L-2-oxothiazolidine-4-carboxylate augmented intracellular glutathione concentration and A23187-stimulated LTC4 synthesis and attenuated the capacity of NEM to deplete glutathione and inhibit LTC4 synthesis. While LTB4 and 5-hydroxyeicosatetraenoic synthesis were unaffected at these low NEM concentrations, LTB4 synthesis was inhibited at high concentrations (IC50 approximately 210 microM). Zymosan-induced eicosanoid synthesis was modulated by NEM in a similar fashion. Thus, NEM is an agonist of arachidonate metabolism with the capacity to modulate the spectrum of macrophage-derived eicosanoids by virtue of specific biochemical interactions with substrates and enzymes of the 5-lipoxygenase pathway.  相似文献   

9.
Phorbol myristate acetate (PMA), a tumor-promoting phorbol ester, and the calcium ionophore A23187 synergistically induced the noncytotoxic release of leukotriene B4 (LTB4) and other 5-lipoxygenase products of arachidonic acid metabolism from human neutrophils. Whereas neutrophils incubated with either A23187 (0.4 microM) or PMA (1.6 microM) alone failed to release any 5-lipoxygenase arachidonate products, neutrophils incubated with both stimuli together for 5 min at 37 degrees C released LTB4 as well as 20-COOH-LTB4, 20-OH-LTB4, 5-(S),12-(R)-6-trans-LTB4, 5-(S),12-(S)-6-trans-LTB4, and 5-hydroxyeicosatetraenoic acid, as determined by high pressure liquid chromatography. This synergistic response exhibited concentration dependence on both PMA and A23187. PMA induced 5-lipoxygenase product release at a concentration causing a half-maximal effect of approximately 5 nM in the presence of A23187 (0.4 microM). Competition binding experiments showed that PMA inhibited the specific binding of [3H]phorbol dibutyrate ([3H]PDBu) to intact neutrophils with a 50% inhibitory concentration (IC50) of approximately 8 nM. 1-oleoyl-2-acetyl-glycerol (OAG) also acted synergistically with A23187 to induce the release of 5-lipoxygenase products. 4 alpha-phorbol didecanoate (PDD), an inactive phorbol ester, did not affect the amount of lipoxygenase products released in response to A23187 or compete for specific [3H]PDBu binding. PMA and A23187 acted synergistically to increase arachidonate release from neutrophils prelabeled with [3H]arachidonic acid but did not affect the release of the cyclooxygenase product prostaglandin E2. Both PMA and OAG, but not PDD, induced the redistribution of protein kinase C activity from the cytosol to the membrane fraction of neutrophils, a characteristic of protein kinase C activation. Thus, activation of protein kinase C may play a physiologic role in releasing free arachidonate substrate from membrane phospholipids and/or in modulating 5-lipoxygenase activity in stimulated human neutrophils.  相似文献   

10.
The regulation of arachidonic acid conversion by the 5-lipoxygenase and the cyclooxygenase pathways in mouse peritoneal macrophages has been studied using particulate and soluble agonists. Particulate agonists, zymosan and latex, stimulated the production of cyclooxygenase metabolites as well as the 5-lipoxygenase product, leukotriene C4. In contrast, incubation with the soluble agonist phorbol myristate acetate or exogenous arachidonic acid led to the production of cyclooxygenase metabolites but not leukotriene C4. We tested the hypothesis that the 5-lipoxygenase, unlike the cyclooxygenase, requires activation by calcium before arachidonic acid can be utilized as a substrate. Addition of phorbol myristate acetate to macrophages in the presence of calcium ionophore (A23187) at a concentration which alone did not stimulate arachidonate metabolism resulted in a synergistic increase (50-fold) in leukotriene C4 synthesis compared to phorbol ester or A23187 alone. No such effect on the cyclooxygenase pathway metabolism was observed. Exogenous arachidonic acid in the presence of A23187 produced similar results yielding a 10-fold greater synthesis of leukotriene C4 over either substance alone without any effects on the cyclooxygenase metabolites. Presumably, calcium ionophore unmasked the synthesis of leukotriene C4 from phorbol myristate acetate-released and exogenous arachidonate by elevating intracellular calcium levels enough for 5-lipoxygenase activation. These data indicate that once arachidonic acid is released from phospholipid by an agonist, it is available for conversion by both enzymatic pathways. However, leukotriene synthesis may not occur unless intracellular calcium levels are elevated either by phagocytosis of particulate agonists or with calcium ionophore.  相似文献   

11.
Neutrophils which ingest particles (serum-treated zymosan, monosodium urate crystals) or are exposed to calcium ionophore A23187 generate leukotriene B4 (LTB4). Earlier work has shown that cells exposed to colchicine before exposure to monosodium urate crystals produce less LTB4; the formation of 5-HETE is unaffected. To determine whether inhibition by colchicine of LTB4 generation was stimulus-specific and was mediated by microtubule integrity, the effects of colchicine (10 microM, 60 min) on the release of lipoxygenase products from neutrophils exposed to ionophore A23187 (10 microM, 5 min) were examined. In the presence of exogenous arachidonic acid (100 microM, 15 min), colchicine decreased LTB4 to 48% +/- 11.7 of control and 5-HETE to 60.5% +/- 5.7 of control (mean +/- SEM); 15-HETE was also decreased to 61% +/- 10.3 of control. In the absence of exogenous arachidonate, LTB4 was decreased to 22.2% +/- 11.7 of control and 5-HETE to 13% +/- 4.8 of control. Lumicolchicine did not significantly affect formation of 5-HETE or LTB4. However, vinblastine sulfate (20 microM, 60 min), another microtubule-disruptive agent, decreased the formation of both 5-lipoxygenase products. The effects of colchicine and vinblastine were not due to impairment of cell viability because the release of cytoplasmic lactic dehydrogenase was unaffected. Ultrastructural analysis of centriolar microtubules showed that decrements in microtubule numbers of colchicine- and vinblastine-treated cells paralleled decrements in 5-lipoxygenase products. These pharmacologic manipulations suggested that functional microtubules might be required for optimal lipoxygenase activity. Consequently, we prepared neutrophil-derived cytoplasts, devoid of an intact microtubule system. No significant decreases in the 5- or 15-lipoxygenase products were found when cytoplasts were exposed to colchicine in the presence of exogenous arachidonate and A23187. The data show that colchicine inhibits the formation of lipoxygenase products from neutrophils stimulated with A23187, most likely via its effect on microtubules, the integrity of which appears necessary for full expression of 5- and 15-lipoxygenases.  相似文献   

12.
We have demonstrated translocation of HL-60 cell 5-lipoxygenase to a membrane compartment in response to both the calcium ionophore A23187 and the receptor-mediated stimulus, N-formyl-methionyl-leucyl-phenylalanine (fMLP). In addition, we have shown inhibition of A23187- and fMLP-induced 5-lipoxygenase translocation by an indole and a quinoline leukotriene synthesis inhibitor, MK-886 and L-674,573, respectively. Selectivity of inhibition of 5-lipoxygenase translocation in both fMLP- or A23187-challenged cells is shown using the indole L-583,916 and quinoline L-671,480, which neither inhibit leukotriene synthesis nor inhibit 5-lipoxygenase translocation. The present study in HL-60 cells is the first demonstration of the selective inhibition of 5-lipoxygenase translocation by quinoline leukotriene synthesis inhibitors, exemplified by L-674,573. Also described here is the first demonstration of 5-lipoxygenase translocation and inhibition in response to a stimulus other than A23187, namely the receptor-mediated stimulus, fMLP.  相似文献   

13.
The metabolism of arachidonic acid (AA) was investigated in purified guinea pig alveolar eosinophils and macrophages. Alveolar eosinophils produced 12S-hydroxy-5,8,10-heptadecatraenoic acid (HHT) and small amounts only of 5-lipoxygenase products when stimulated by AA (10 microM) or ionophore A23187 (2 microM). However, when the cell suspensions were stimulated with both AA and A23187, the cells produced HHT, leukotriene (LT) B4, and 5S-hydroxy-6,8,11,14-eicosatetraenoic acid, whereas LTC4, D4, and E4 were undetectable. Similarly, alveolar macrophages stimulated with A23187 produced HHT, 5-hydroxy-6,8,11,14-eicosatetraenoic acid, and LTB4 but no peptido-leukotrienes. When LTA4 was added to suspensions of eosinophils and macrophages, only LTB4 was formed, whereas in parallel experiments, intact human platelets incubated with LTA4 produced LTC4. These data suggest that guinea pig alveolar eosinophils and macrophages contain both cyclooxygenase and 5-lipoxygenase, but do not produce peptido-leukotrienes, probably lacking LTA4 glutathione transferase activity. These studies demonstrate that guinea pig eosinophils differ from eosinophils of other animal species which have been shown to be major sources of leukotriene C4. The present data imply that eosinophils and macrophages are not the source of peptido-leukotrienes in anaphylactic guinea pig lungs.  相似文献   

14.
Human platelets are devoid of 5-lipoxygenase activity but convert exogenous leukotriene A4 (LTA4) either by a specific LTC4 synthase to leukotriene C4 or via a 12-lipoxygenase mediated reaction to lipoxins. Unstimulated platelets mainly produced LTC4, whereas only minor amounts of lipoxins were formed. Platelet activation with thrombin, collagen or ionophore A23187 increased the conversion of LTA4 to lipoxins and decreased the leukotriene production. Maximal effects were observed after incubation with ionophore A23187, which induced synthesis of comparable amounts of lipoxins and cysteinyl leukotrienes (LTC4, LTD4 and LTE4). Chelation of intra- and extracellular calcium with quin-2 and EDTA reversed the ionophore A23187-induced stimulation of lipoxin synthesis from LTA4 and inhibited the formation of 12-hydroxyeicosatetraenoic acid (12-HETE) from endogenous substrate. However, calcium did not affect the 12-lipoxygenase activity in the 100 000 × g supernatant of sonicated platelet suspensions. Furthermore, the stimulatory effect on lipoxin formation induced by platelet agonists could be mimicked in intact platelets by the addition of low concentrations of arachidonic acid, 12-hydroperoxyeicosatetraenoic acid (12-HPETE) or 13-hydroperoxyoctadecadienoic acid (13-HPODE). The results indicate that the elevated lipoxin synthesis during platelet activation is due to stimulated 12-lipoxygenase activity induced by endogenously formed 12-HPETE.  相似文献   

15.
We have previously shown that the biologically important reactive oxygen metabolite hydrogen peroxide (H2O2) stimulates arachidonic acid (AA) release and thromboxane A2 synthesis in the rat alveolar macrophage. We have now investigated the effects of H2O2 on alveolar macrophage 5-lipoxygenase metabolism. H2O2 failed to stimulate detectable synthesis of leukotriene B4, leukotriene C4, or 5-hydroxyeicosatetraenoic acid (5-HETE) as determined by reverse-phase high performance liquid chromatography (RP-HPLC) and sensitive radioimmunoassays (RIAs). This was not explained by oxidative degradation of leukotrienes by H2O2 at the concentrations used. Moreover, RIA and RP-HPLC analyses demonstrated that H2O2 dose-dependently inhibited synthesis of leukotriene B4, leukotriene C4, and 5-HETE induced by the agonists A23187 (10 microM) and zymosan (100 micrograms/ml), over the same concentration range at which it augmented synthesis of the cyclooxygenase products thromboxane A2 and 12-hydroxy-5,8,10-heptadecatrienoic acid. Four lines of evidence suggested that H2O2 inhibited alveolar macrophage leukotriene and 5-HETE synthesis by depleting cellular ATP, a cofactor for 5-lipoxygenase. 1) H2O2 depleted ATP in A23187- and zymosan-stimulated alveolar macrophages with a dose dependence very similar to that for inhibition of agonist-induced leukotriene synthesis. 2) The time courses of ATP depletion and inhibition of leukotriene B4 synthesis by H2O2 were compatible with a rate-limiting effect of ATP on leukotriene synthesis in H2O2-exposed cultures. 3) Treatment of alveolar macrophages with the electron transport inhibitor antimycin A prior to A23187 stimulation depleted ATP and inhibited leukotriene B4 and C4 synthesis to equivalent degrees, while thromboxane A2 production was spared. 4) Incubation with the ATP precursors inosine plus phosphate attenuated both ATP depletion and inhibition of leukotriene B4 and C4 synthesis in alveolar macrophages stimulated with A23187 in the presence of H2O2. Our results show that H2O2 has the capacity to act both as an agonist for macrophage AA metabolism, and as a selective inhibitor of the 5-lipoxygenase pathway, probably as a result of its ability to deplete ATP. Depletion of cellular energy stores by oxidants generated during inflammation in vivo may be a means by which the inflammatory response is self-limited.  相似文献   

16.
Perforin gene expression upon in vitro stimulation was studied at the mRNA level in normal human PBMC and in subpopulations. Freshly isolated PBMC express low levels of perforin mRNA. Increased perforin expression is rapidly induced by the calcium ionophore A23187 and by rIL-2. Phorbolesters (PMA), by comparison, are poor inducers of perforin RNA. Perforin induction by Ca-ionophore, unlike granzyme 2 and IL-2 induction, did not synergize with phorbolesters in PBMC or in purified T cells. Instead, perforin mRNA induction by A23187 in purified T cells requires the presence of adherent cells. Ca-ionophore plus adherent cell-induced perforin occurred in CD8+ T cells and was abolished by depletion of CD8+ T cells but not by depletion of CD4+ T cells. Adherent cells alone did not express perforin under any condition. Perforin mRNA induction by both A23187 and by rIL-2 is independent of de novo protein synthesis. The half-life of perforin mRNA induced by either stimulus is approximately 100 min. Cyclosporin A completely abrogates perforin induction by A23187 but only slightly inhibits the effect of rIL-2 on perforin mRNA expression. These data show that A23187 activates perforin gene expression in CD8+ cells by an IL-2-independent pathway and that the molecular mechanism of perforin expression may be different from the one induced by IL-2. Granzyme 2 (human leukocyte protease-HLP, homologous to murine granzyme B) mRNA expression was studied in comparison to perforin. Granzyme 2 in contrast to perforin responds to the synergistic action of phorbolester and Ca-ionophore in PBMC. In addition, the kinetics of the induction of granzyme and perforin mRNA, by various signals are different. Our data suggest that situations in vivo may exist that allow perforin expression in CD8+ cells in the absence of cytokines by a combination of Ca signals and accessory receptor ligation. The same signals may not be sufficient for granzyme 2 expression in any T cell subpopulation.  相似文献   

17.
Products of the 5-lipoxygenase pathway were analyzed after different stimuli in human polymorphonuclear leukocytes prelabeled with 3H-arachidonic acid. Upon stimulation with the Ca2+ ionophore, A23187, polymorphonuclear leukocytes generate 118.2 +/- 18 pg [3H]dihydroxyeicosatetraenoic acids (diHETEs, including 3H-leukotriene B4 and its 6-trans-stereoisomers), after exposure to serum coated zymosan (35.8 +/- 9 pg) and N-fMet-Leu-Phe (39.5 +/- 9 pg). Conversion of 3H-arachidonic acid paralleled its release after A23187 and fMet-Leu-Phe exposure leaving only 13.8 +/- 7% and 13.6 +/- 3% of the released 3H-arachidonic acid unmetabolized, respectively. In contrast, after stimulation with serum-coated zymosan only a small fraction of the released 3H-arachidonate was converted to 5-lipoxygenase products leaving 73.0 +/- 5% of the released 3H-arachidonic acid unmetabolized. In parallel, leukotriene B4 synthesis was studied in unlabeled polymorphonuclear leukocytes, resulting in 40 +/- 15 ng upon A23187 stimulation, 4 +/- 0.9 ng upon stimulation with fMet-Leu-Phe and 1.8 +/- 0.9 ng after serum-coated zymosan, showing a different ratio of leukotriene B4 to 3H-diHETE for A23187 in contrast to serum-coated zymosan and fMet-Leu-Phe. These results indicate that the coupling between the release of the precursor fatty acid and the metabolism via the 5-lipoxygenase pathway differs greatly between different stimuli.  相似文献   

18.
Experiments were conducted to examine the effects of (a) different activation methods, (b) incubation time in calcium-free medium and (c) bisbenzimide staining on the activation and subsequent development of pig oocytes. Oocytes were matured in vitro and activated by one of the following methods: combined thimerosal/dithiothreitol (DTT) treatment, calcium ionophore A23187 treatment followed by incubation in the presence of 6-dimethylaminopurine (6-DMAP), electroporation, and electroporation followed by incubation with cytochalasin B. There were no significant differences in the activation rate (ranging from 70.0% to 88.3%) and the percentage of cleaved embryos after activation (ranging between 48.8% and 58.8%) among the four treatment groups (p < 0.05). The rate of development of the blastocyst stage in oocytes activated by thimerosal/DTT (10.0%) or electroporation followed by cytochalasin B treatment (12.3%) was significantly higher (p < 0.05) than in the group activated with A23187/6-DMAP (2.5%). Both the activation rate and the rate of blastocyst formation in oocytes that were incubated in Ca(2+)-free medium for 8 h before thimerosal/DTT activation were significantly lower (p < 0.05) than in those incubated for 0, 1 or 4 h. Intracellular Ca2+ measurements revealed that the Ca2+ homeostasis in these oocytes were severely altered. Staining of oocytes with 5 micrograms/ml bisbenzimide for 2 h decreased the quality of blastocysts and increased the rate of degenerated embryos at day 6. Two activation protocols (thimerosal/DTT and electroproation) were used for activation after nuclear transfer; the rate of nuclear formation did not differ in the oocytes activated by the two different methods.  相似文献   

19.
Arachidonic acid metabolism in ionophore A23187-activated human polymorphonuclear leukocytes (PMNs) proceeds predominantly via the 5-lipoxygenase pathway in comparison to metabolism by the 15-lipoxygenase route. Products of both lipoxygenase pathways appear to be involved in the mediation of inflammatory reactions. Pretreatment of polymorphonuclear leukocytes with micromolar amounts of the platelet-derived 12-lipoxygenase product 12-hydroxy-5,8,10,14- eicosatetraenoic acid (12-HETE) prior to the addition of A23187 and [14C]arachidonic acid resulted in the unexpected dose-dependent stimulation of the 15-lipoxygenase pathway, as evidenced by the formation of [14C]15-HETE. A concomitant inhibition of the 5-lipoxygenase pathway was also observed. The structural identity of 15-HETE was confirmed by retention times on straight-phase and reverse-phase high pressure liquid chromatography in comparison with an authentic standard, radioimmunoassay, and chemical derivatization. When other isomeric HETEs were tested, the order of stimulatory potencies was 15-HETE greater than 12-HETE greater than 5-HETE. When arachidonic acid metabolism via the 5-lipoxygenase route was inhibited by nordihydroguaiaretic acid, previously ineffective concentrations of exogenous 12-HETE were now able to stimulate the polymorphonuclear leukocyte 15-lipoxygenase. Thus, blockade of the 5-lipoxygenase pathway appeared to be a prerequisite for the activation of the 15-lipoxygenase. The HETE-induced activation of the 15-lipoxygenase occurred within 1-2 min, was a reversible process, and was enhanced in the presence of A23187. In nine donors tested, up to 14-fold stimulation of [14C]15-HETE production was observed. Our results indicate that endogenous HETEs can have a dual role in the post-phospholipase regulation of arachidonic acid metabolism since they can act as physiological stimulators of the 15-lipoxygenase as well as inhibitors of the 5-lipoxygenase.  相似文献   

20.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is an in vitro and in vivo stimulator of human bone marrow myelomonocytic precursor cells and mature granulocyte and macrophage effector cells. We have compared the effect of GM-CSF on the synthesis of 5-lipoxygenase products induced by the chemotactic peptide fMet-Leu-Phe and the calcium ionophore A23187 in human neutrophils. Although GM-CSF alone did not stimulate detectable synthesis of products of the 5-lipoxygenase pathway, pre-incubation of neutrophils with 200 pM GM-CSF for 1 hour at 23 degrees C enhanced synthesis of leukotriene B4, its all-trans isomers and omega-oxidation products, and 5-hydroxyeicosatetraenoic acid in response to both the calcium ionophore A23187 (1.5 microM), and the chemotactic peptide fMet-Leu-Phe (0.1 microM). This priming effect of GM-CSF was maximal after a 60 min incubation at 23 degrees C, or after a 30 min preincubation at 37 degrees C. The effect of GM-CSF was maximal using a concentration of 1 nM. Enhancement of the leukotriene synthesis stimulated by A23187 was only observed when the cells were stimulated by the ionophore for periods of 3 minutes or less. In contrast, the enhancing effect of GM-CSF was still apparent when cells were exposed to fMet-Leu-Phe for as long as 15 minutes. Furthermore, the enhancing effect of GM-CSF was ablated when neutrophils were stimulated with A23187 and exogenous arachidonic acid. However, co-addition of exogenous arachidonic acid with fMet-Leu-Phe did not entirely mask the effect of GM-CSF. Possible mechanisms of action of GM-CSF are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号