首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1’s effects on liver by comparing wild-type controls, heterozygous igf1+/?, and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.  相似文献   

2.

Background

Cellular responses to aging and oxidative stress are regulated by type 1 insulin-like growth factor receptor (IGF-1R). Oxidant injury, which is implicated in the pathophysiology of a number of respiratory diseases, acutely upregulates IGF-1R expression in the lung. This led us to suspect that reduction of IGF-1R levels in lung tissue could prevent deleterious effects of oxygen exposure.

Methods

Since IGF-1R null mutant mice die at birth from respiratory failure, we generated compound heterozygous mice harboring a hypomorphic (Igf-1rneo) and a knockout (Igf-1r-) receptor allele. These IGF-1Rneo/- mice, strongly deficient in IGF-1R, were subjected to hyperoxia and analyzed for survival time, ventilatory control, pulmonary histopathology, morphometry, lung edema and vascular permeability.

Results

Strikingly, after 72 h of exposure to 90% O2, IGF-1Rneo/- mice had a significantly better survival rate during recovery than IGF-1R+/+ mice (77% versus 53%, P < 0.05). The pulmonary injury was consistently, and significantly, milder in IGF-1Rneo/- mice which developed conspicuously less edema and vascular extravasation than controls. Also, hyperoxia-induced abnormal pattern of breathing which precipitated respiratory failure was elicited less frequently in the IGF-1Rneo/- mice.

Conclusion

Together, these data demonstrate that a decrease in IGF-1R signaling in mice protects against oxidant-induced lung injury.  相似文献   

3.
Neurodevelopmental psychiatric disorders such as schizophrenia may be caused by a combination of gene × environment, gene × gene, and/or gene × sex interactions. Reduced expression of both Reelin and Brain‐Derived Neurotrophic factor (BDNF) has been associated with schizophrenia in human post‐mortem studies. However, it remains unclear how Reelin and BDNF interact (gene × gene) and whether this is sex‐specific (gene × sex). This study investigated BDNF‐TrkB signaling in the hippocampus of male and female Reelin heterozygous (Rln+/?) mice. We found significantly increased levels of BDNF in the ventral hippocampus (VHP) of female, but not male Rln+/? compared to wild‐type (WT) controls. While levels of TrkB were not significantly altered, phosphorylated TrkB (pTrkB) levels were significantly lower, again only in female Rln+/? compared to WT. This translated to downstream effects with a significant decrease in phosphorylated ERK1 (pERK1). No changes in BDNF, TrkB, pTrkB or pERK1/2 were observed in the dorsal hippocampus of Rln+/? mice. Ovariectomy (OVX) had no effect in WT controls, but caused a significant decrease in BDNF expression in the VHP of Rln+/? mice to the levels of intact WT controls. The high expression of BDNF was restored in OVX Rln+/? mice by 17β‐estradiol treatment, suggesting that Rln+/? mice respond differently to an altered estradiol state than WT controls. In addition, while OVX had no significant effect on TrkB or ERK expression/phosphorylation, OVX + estradiol treatment markedly increased TrkB and ERK1 phosphorylation in Rln+/? and, to a lesser extent in WT controls, compared to intact genotype‐matched controls. These data may provide a better understanding of the interaction of Reelin and BDNF in the hippocampus, which may be involved in schizophrenia.  相似文献   

4.
The adolescent skeleton undergoes accelerated growth determining overall bone density, length, and quality. Diseases such as type 1 diabetes (T1D), most often diagnosed in adolescents, can alter bone processes and promote bone loss. Studies examining type 1 diabetic (T1D) bone pathologies typically utilize adult mice and rely on pharmacologic models such as streptozotocin (STZ)‐induced diabetic rodents. To test the effect of T1D on adolescent bone growth/density we used a novel juvenile genetic model (Ins2+/? mice) that spontaneously develop T1D at approximately 5 weeks of age and compared our findings with STZ‐induced T1D mice. Compared to controls, both Ins2+/? and STZ‐induced T1D mice displayed blood glucose levels greater than 300 mg/dl and reduced body, fat and muscle mass as well as femur trabecular bone density. STZ mice exhibited greater bone loss compared to Ins2+/? mice despite having lower blood glucose levels. Cortical bone was affected in STZ but not Ins2+/? mice. Osteocalcin serum protein and bone RNA levels decreased in both models. Consistent with studies in adult mice, STZ adolescent mice displayed increased marrow adiposity, however this was not observed in the Ins2+/? mice. Reduced femur length, decreased growth plate thickness and decreased collagen II expression in both model simplies impaired cartilage formation. In summary, both pharmacologic and spontaneous adolescent T1D mice demonstrated a bone synthesis and growth defect. STZ appears to cause a more severe phenotype. Thus, the Ins2+/? mouse could serve as a useful model to study adolescent T1D bone loss with fewer complications. J. Cell. Physiol. 228: 689–695, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Tissue nonspecific alkaline phosphatase (TNAP) has a well established role in bone homeostasis and in hepatic/biliary conditions. In addition, TNAP is expressed in the inflamed intestine and is relevant to T and B lymphocyte function. TNAP KO mice are only viable for a few days, but TNAP+/? haplodeficient mice are viable. Acute pancreatitis was induced by repeated caerulein injection in WT and TNAP+/? mice. TNAP+/? mice presented an increased expression of Cxcl2, Ccl2, Selplg (P-selectin ligand), Il6 and Il1b in the pancreas. Freshly isolated acinar cells showed a dramatic upregulation of Cxcl1, Cxcl2, Ccl2, Il6, Selpg or Bax in both pancreatitis groups. TNAP+/? cells displayed a 2-fold higher expression of Cxcl2, and a smaller increase in Il6. These findings could be partly replicated by in vitro treatment of primary acinar cells with caerulein. Furthermore, the proinflammatory effect on acinar cells could be partially reproduced in wild type cells treated with the TNAP inhibitor levamisole. TNAP mRNA levels were also markedly upregulated by pancreatitis in acinar cells. Neutrophil infiltration (MRP8+ cells) and activation (IL-6 and TNF production in LPS treated primary neutrophils) were increased in TNAP+/? vs WT mice. Neutrophil depletion greatly attenuated inflammation, indicating that this cell type is mainly responsible for the higher inflammatory status of TNAP+/? mice. In conclusion, our results show that altered TNAP expression results in heightened pancreatic inflammation, which may be explained by an augmented response of neutrophils and by a higher sensitivity of acinar cells to caerulein injury.  相似文献   

6.
7.
Many of the neurodegenerative diseases that afflict people in later life are associated with the formation of protein aggregates. These so-called “proteinopathies” include Alzheimer’s disease (AD) and Huntington’s disease (HD). The insulin/insulin-like growth factor signalling (IIS) pathway has been proposed to modulate such diseases in model organisms, as well as the general ageing process. In this pathway, insulin-like growth factor binds to insulin-like growth factor receptors, such as the insulin-like growth factor 1 receptor (IGF-1R). Heterozygous deletion of Igf-1r has been shown to lead to increased lifespan in mice. Reducing the activity of this pathway had benefits in a HD C. elegans model, and some of these may be attributed to the expected inhibition of mTOR activity resulting in an increase in autophagy, which would enhance mutant huntingtin clearance. Thus, we tested if heterozygous deletion of Igf-1r would lead to benefits in HD related phenotypes in the mouse. Surprisingly, reducing Igf-1r levels led to some beneficial effects in HD females, but also led to some detrimental effects in HD males. Interestingly, Igf-1r deficiency had no discernible effects on downstream mTOR signalling in HD mice. These results do not support a broad beneficial effect of diminishing the IIS pathway in HD pathology in a mammalian system.  相似文献   

8.
《Free radical research》2013,47(5):550-558
Abstract

Reactive oxygen species (ROS) are involved in both bone and cartilage physiology and play an important role in the pathogenesis of osteoporosis and osteoarthritis. The present study investigated the effect of running exercise on bone and cartilage in heterozygous manganese superoxide dismutase (SOD2)-deficient mice. It was hypothesized that exercise might induce an increased production of ROS in these tissues. Heterozygous SOD2-deficient mice should exhibit an impaired capability to compensate, resulting in an increased oxidative stress in cartilage and bone. Thirteen female wild type and 20 SOD2+/? mice (aged 16 weeks) were randomly assigned to a non-active wild type (SOD2+/+Con, n = 7), a trained wild type (SOD2+/+Run, n = 6), a non-active SOD2+/? (SOD2+/?Con, n = 9) and a trained SOD2+/? (SOD2+/?Run, n = 11) group. Training groups underwent running exercise on a treadmill for 8 weeks. In SOD2+/? mice elevated levels of 15-F2t-isoprostane and nitrotyrosine were detected in bone and articular cartilage compared to wild type littermates. In osteocytes the elevated levels of these molecules were found to be reduced after exercise while in chondrocytes they were increased by aerobic running exercise. The observed changes in oxidative and nitrosative stress did neither affect morphological, structural nor mechanical properties of both tissues. These results demonstrate that exercise might protect bone against oxidative stress in heterozygous SOD2-deficient mice.  相似文献   

9.
10.
The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET+/?), demonstrating that they display an approximately 50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface‐resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET+/? mouse establishes an activated state of existing surface NET proteins. The NET+/? mice exhibit increased anxiety in the open field and light–dark box and display deficits in reversal learning in the Morris water maze. These data suggest that recovery of near basal activity in NET+/? mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET+/? mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders .  相似文献   

11.
Reactive oxygen species (ROS) and telomere dysfunction are both associated with aging and the development of age-related diseases. Although there is evidence for a direct relationship between ROS and telomere dysfunction as well as an independent association of oxidative stress and telomere attrition with age-related disorders, there has not been sufficient exploration of how the interaction between oxidative stress and telomere function may contribute to the pathophysiology of cardiovascular diseases (CVD). To better understand the complex relationships between oxidative stress, telomerase biology and pathophysiology, we examined the telomere biology of aortic smooth muscle cells (ASMCs) isolated from mutant mouse models of oxidative stress. We discovered that telomere lengths were significantly shorter in ASMCs isolated from superoxide dismutase 2 heterozygous (Sod2+/?) mice, which exhibit increased arterial stiffness with aging, and the observed telomere attrition occurred over time. Furthermore, the telomere erosion occurred even though telomerase activity increased. In contrast, telomeres remained stable in wild-type and superoxide dismutase 1 heterozygous (Sod1+/?) mice, which do not exhibit CVD phenotypes. The data indicate that mitochondrial oxidative stress, in particular elevated superoxide levels and decreased hydrogen peroxide levels, induces telomere erosion in the ASMCs of the Sod2+/? mice. This reduction in telomere length occurs despite an increase in telomerase activity and correlates with the onset of disease phenotype. Our results suggest that the oxidative stress caused by imbalance in mitochondrial ROS, from deficient SOD2 activity as a model for mitochondrial dysfunction results in telomere dysfunction, which may contribute to pathogenesis of CVD.  相似文献   

12.
Infection with Trypanosoma cruzi causes Chagas disease and results in myocardial inflammation and cardiomyopathy. Downregulated Hexim1 expression, as in Hexim1+/? mice, reduces cardiac inflammation and fibrosis following ischemic stress. We asked whether reduced expression of Hexim1 would also afford protection against T. cruzi-induced cardiomyopathy. C57BL/6J (wild type – WT) and Hexim1+/? mice were infected with sub-lethal doses of T. cruzi (Brazil strain), and cardiac function, serologic markers of inflammation and tissue pathology were examined. Infected Hexim1+/? mice had compromised cardiac function, altered expression of both pro- and anti-inflammatory cytokines, and increased inflammation and fibrosis. Cardiac failure was evidenced by severely diminished heart rate, compensatory increase in respiratory rate, and abnormally high left ventricular mass with severe transmural inflammation. Lungs displayed intense peribronchial inflammation and fibrosis extending into the parenchyma. We also observed Smad3-serine208 phosphorylation in hearts and lungs of infected mice, suggesting increased TGF-β signaling pathway activity. This was more pronounced in Hexim1+/? mice and correlated with increased fibrosis in these tissues. Conspicuous splenomegaly in the Hexim1+/? mice most likely resulted from the observed extensive white pulp expansion. T. cruzi infection induced colonic dilatation and marked villous atrophy in both the WT and Hexim1+/? mice but more so in the latter. The profound exacerbation of pathologic findings suggests a protective role for Hexim1 in T. cruzi infection.  相似文献   

13.
Elevated levels of homocysteine produce detrimental effects in humans but its role in preterm birth is not known. Here we used a mouse model of hyperhomocysteinemia to examine the relevance of homocysteine to preterm birth. The mouse carries a heterozygous deletion of cystathionine β-synthase (Cbs+/?). Gestational period was monitored in wild type and Cbs+/? female mice. Mouse uterine and placental tissues, human primary trophoblast cells, and human myometrial and placental cell lines were used to determine the influence of homocysteine on expression of specific genes in vitro. The activity of BKCa channel in the myometrial cell line was monitored using the patch-clamp technique. We found that hyperhomocysteinemia had detrimental effects on pregnancy and induced preterm birth in mice. Homocysteine increased the expression of oxytocin receptor and Cox-2 as well as PGE2 production in uterus and placenta, and initiated premature uterine contraction. A Cox-2 inhibitor reversed these effects. Gpr109a, a receptor for niacin, induced Cox-2 in uterus. Homocysteine upregulated GPR109A and suppressed BKCa channel activity in human myometrial cells. Deletion of Gpr109a in Cbs+/? mice reversed premature birth. We conclude that hyperhomocysteinemia causes preterm birth in mice through upregulation of the Gpr109a/Cox-2/PGE2 axis and that pharmacological blockade of Gpr109a may have potential in prevention of preterm birth.  相似文献   

14.
Krabbe disease is an inherited lysosomal disorder in which galactosylsphingosine (psychosine) accumulates mainly in the central nervous system. To gain insight into the possible mechanism(s) that may be participating in the inhibition of the postnatal somatic growth described in the animal model of this disease (twitcher mouse, twi), we studied their femora. This study reports that twi femora are smaller than of those of wild type (wt), and present with abnormality of marrow cellularity, bone deposition (osteoblastic function), and osteoclastic activity. Furthermore, lipidomic analysis indicates altered sphingolipid homeostasis, but without significant changes in the levels of sphingolipid-derived intermediates of cell death (ceramide) or the levels of the osteoclast–osteoblast coupling factor (sphingosine-1-phosphate). However, there was significant accumulation of psychosine in the femora of adult twi animals as compared to wt, without induction of tumor necrosis factor-alpha or interleukin-6. Analysis of insulin-like growth factor-1 (IGF-1) plasma levels, a liver secreted hormone known to play a role in bone growth, indicated a drastic reduction in twi animals when compared to wt. To identify the cause of the decrease, we examined the IGF-1 mRNA expression and protein levels in the liver. The results indicated a significant reduction of IGF-1 mRNA as well as protein levels in the liver from twi as compared to wt littermates. Our data suggest that a combination of endogenous (psychosine) and endocrine (IGF-1) factors play a role in the inhibition of postnatal bone growth in twi mice; and further suggest that derangements of liver function may be contributing, at least in part, to this alteration.  相似文献   

15.
16.
17.
To investigate the effects of a critical enzyme, cerebroside sulfotransferase (CST), involving sulfatide biosynthesis on lipid (particularly sphingolipid) homeostasis, herein, we determined the lipidomes of brain cortex and spinal cord from CST null and heterozygous (CST?/? and CST+/?, respectively) mice in comparison to their wild-type littermates by multi-dimensional mass spectrometry-based shotgun lipidomics. As anticipated, we demonstrated the absence of sulfatide in the tissues from CST?/? mice and found that significant reduction of sulfatide mass levels was also present, but in an age-dependent manner, in CST+/? mice. Unexpectedly, we revealed that the profiles of sulfatide species in CST+/? mice were significantly different from that of littermate controls with an increase in the composition of species containing saturated and hydroxylated fatty acyl chains. Contrary to the changes of sulfatide levels, shotgun lipidomics analysis did not detect significant changes of the mass levels of other lipid classes examined. Taken together, shotgun lipidomics analysis demonstrated anticipated sulfatide mass deficiency in CST defect mouse brain and revealed novel brain lipidome homeostasis in these mice. These results might provide new insights into the role of CST in myelin function.  相似文献   

18.
Impaired insulin/IGF1 signalling has been shown to extend lifespan in model organisms ranging from yeast to mammals. Here we sought to determine the effect of targeted disruption of the insulin receptor (IR) in non‐neuronal tissues of adult mice on the lifespan. We induced hemizygous (PerIRKO+/?) or homozygous (PerIRKO?/?) disruption of the IR in peripheral tissue of 15‐weeks‐old mice using a tamoxifen‐inducible Cre transgenic mouse with only peripheral tissue expression, and subsequently monitored glucose metabolism, insulin signalling and spontaneous death rates over 4 years. Complete peripheral IR disruption resulted in a diabetic phenotype with increased blood glucose and plasma insulin levels in young mice. Although blood glucose levels returned to normal, and fat mass was reduced in aged PerIRKO?/? mice, their lifespan was reduced. By contrast, heterozygous disruption had no effect on lifespan. This was despite young male PerIRKO+/? mice showing reduced fat mass and mild increase in hepatic insulin sensitivity. In conflict with findings in metazoans like Caenorhabditis elegans and Drosophila melanogaster, our results suggest that heterozygous impairment of the insulin signalling limited to peripheral tissues of adult mice fails to extend lifespan despite increased systemic insulin sensitivity, while homozygous impairment shortens lifespan.  相似文献   

19.
Paracrine cell-to-cell interactions are crucial events during atherogenesis, however, little is known on the role of gap junctional communication during this process. We recently demonstrated increased expression of Cx43 in intimal smooth muscle cells and in a subset of endothelial cells covering the shoulder of atherosclerotic plaques. The purpose of this study was to examine the role of Cx43 in the development of atherosclerosis in vivo. Atherosclerosis-susceptible LDL receptor-deficient (LDLR?/?) mice were intercrossed with mice heterozygous for Cx43 (Cx43+/?mice). Male mice with normal (Cx43+/+LDLR?/?) or reduced (Cx43+/?LDLR?/?) Cx43 level of 10 weeks old were fed a cholesterol-rich diet (1.25%) for 14 weeks. Both groups of mice showed similar increases in serum lipids and body weight. Interestingly, the progression of atherosclerosis was reduced by 50% (P < 0.01) in the thoraco-abdominal aorta and in the aortic roots of Cx43+/?LDLR?/?mice compared with Cx43+/+LDLR?/?littermate controls. In addition, atheroma in Cx43+/?LDLR?/?mice contained fewer inflammatory cells and exhibited thicker fibrous caps with more collagen and smooth muscle cells, important features associated, in human, with stable atherosclerotic lesions. Thus, reducing Cx43 expression in mice provides beneficial effects on both the progression and composition of the atherosclerotic lesions.  相似文献   

20.
Neurofibromatosis type‐1 (NF1) is a common neurogenetic disorder and an important cause of intellectual disability. Brain‐behaviour associations can be examined in vivo using morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to study brain structure. Here, we studied structural and behavioural phenotypes in heterozygous Nf1 mice (Nf1+/?) using T2‐weighted imaging MRI and DTI, with a focus on social recognition deficits. We found that Nf1+/? mice have larger volumes than wild‐type (WT) mice in regions of interest involved in social cognition, the prefrontal cortex (PFC) and the caudate‐putamen (CPu). Higher diffusivity was found across a distributed network of cortical and subcortical brain regions, within and beyond these regions. Significant differences were observed for the social recognition test. Most importantly, significant structure–function correlations were identified concerning social recognition performance and PFC volumes in Nf1+/? mice. Analyses of spatial learning corroborated the previously known deficits in the mutant mice, as corroborated by platform crossings, training quadrant time and average proximity measures. Moreover, linear discriminant analysis of spatial performance identified 2 separate sub‐groups in Nf1+/? mice. A significant correlation between quadrant time and CPu volumes was found specifically for the sub‐group of Nf1+/? mice with lower spatial learning performance, suggesting additional evidence for reorganization of this region. We found strong evidence that social and spatial cognition deficits can be associated with PFC/CPu structural changes and reorganization in NF1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号