首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The membraneless bioelectrochemical reactor (Ml-BER) is useful for dark hydrogen fermentation. The effect of the electrochemical reaction on microorganisms in the Ml-BER was investigated using glucose as the substrate and compared with organisms in a membraneless non-bioelectrochemical reactor (Ml-NBER) and bioelectrochemical reactor (BER) with a proton exchange membrane. The potentials on the working electrode of the Ml-BER and BER with membrane were regulated to ?0.9 V (versus Ag/AgCl) to avoid water electrolysis with a carbon electrode. The Ml-BER showed suppressed methane production (19.8?±?9.1 mg-C·L?1·day?1) and increased hydrogen production (12.6?±?3.1 mg-H·L?1·day?1) at pHout 6.2?±?0.1, and the major intermediate was butyrate (24.9?±?2.4 mM), suggesting efficient hydrogen fermentation. In contrast, the Ml-NBER showed high methane production (239.3?±?17.9 mg-C·L?1·day?1) and low hydrogen production (0.2?±?0.0 mg-H·L?1·day?1) at pHout 6.3?±?0.1. In the cathodic chamber of the BER with membrane, methane production was high (276.3?±?20.4 mg-C·L?1·day?1) (pHout, 7.2?±?0.1). In the anodic chamber of the BER with membrane (anode-BER), gas production was low because of high lactate production (43.6?±?1.7 mM) at pHout 5.0?±?0.1. Methanogenic archaea were not detected in the Ml-BER and anode-BER. However, Methanosarcina sp. and Methanobacterium sp. were found in Ml-NBER. Prokaryotic copy numbers in the Ml-BER and Ml-NBER were similar, as were the bacterial community structures. Thus, the electrochemical reaction in the Ml-BER affected hydrogenotrophic and acetoclastic methanogens, but not the bacterial community.  相似文献   

2.
3.
Efforts to increase the productivity of microalgal cultures have been focused on the improvement of photobioreactors, but little attention has been paid to the nutritional requirements of microalgae in order to improve culture media formulation. In this study, the main goal was obtaining a high productivity for Tetraselmis suecica (Chlorophyta) in semicontinuous culture by adding magnesium (Mg), silicon (Si), and strontium (Sr) at concentrations from 0.01 to 10 mM; at the time, the effect on steady-state cell density, biochemical composition, and antioxidant activity of T. suecica was evaluated. Because productivity is higher in high-density cultures, the work was focused many times to cell density. Mg (3 mM) and Sr (0.1 mM) added separately reached the highest steady-state cell density (7.0?×?106?±?0.4 cells mL?1) in comparison to control (4.2?±?0.1 cells mL?1), but simultaneous addition had a synergic effect, achieving 8.7?×?106?±?0.6 cells mL?1. Silicon (3 mM) significantly affected the steady-state cell density, reaching 6.0?±?0.3 cells mL?1 and increased the cell ash-free dry weight, reaching 127?±?7.9 pg cell?1 in comparison to control (102.7?±?5.0 pg cell?1), resulting in an ash-free dry weight productivity of 0.75?±?0.07 g?L?1 day?1. The highest fatty acids content and antioxidant activity, measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method were obtained with Sr 10 mM. Sr treatments showed a high correlation (R 2?=?0.98) between DPPH inhibition and polyphenolic content, explaining its high antioxidant activity. Therefore, the addition of Mg, Si, and Sr to culture medium of T. suecica is recommended to achieve high steady-state cell density in semicontinuous cultures.  相似文献   

4.
Metformin (MET), an anti-diabetic oral drug with antioxidant properties, has been proved to provide cardioprotective effects in patients with diabetic disease. However, the mechanism is unclear. This study aimd to investigate the effects of MET on the expressions of receptor for advanced glycation end products (RAGE) and high mobility group box 1 protein (HMGB1) in hyperglycemia-treated neonatal rat ventricular myocytes. Cardiocytes were prepared and cultured with high glucose and different concentrations of MET. The expressions of RAGE and HMGB1 were evaluated by Western blot analysis. The superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), lactate dehydrogenase (LDH) and creatine kinase (CK) were measured. After 12 h-incubation, MET significantly inhibited the increase of MDA, TNF-α, LDH and CK levels induced by high glucose, especially at the 5 × 10?5 to 10?4 mol/L concentrations while inhibiting the decrease of SOD level. Meanwhile, RAGE and HMGB1 expression were significantly increased induced by hyperglycaemia for 24 h (P < 0.05). MET inhibited the expressions of RAGE and HMGB1 in a dose-dependent manner, especially at the 5 × 10?5 to 10?4 mol/L concentrations (P < 0.05). In conclusion, our study suggested that MET could reduce hyperglycemia-induced cardiocytes injury by inhibiting the expressions of RAGE and HMGB1.  相似文献   

5.
Increase in body weight and adiposity has deleterious consequences on health. The aim of this study was to compare morphological and metabolic changes in the arterial vessels of Wistar rats with conditions of obesity, hypoestrogenism, and hypoestrogenism plus obesity. Ovariectomized rats (hypoestrogenic condition) received 30 % sugar in drinking water plus standard diet during 10 weeks. The hypoestrogenic-obese (HE-OB) group presented increase in weight, blood pressure, hypertriglyceridemia, and hyperglycemia compared with other groups. The morphological study in aortic vessels from HE showed damage in endothelial smooth muscle tissue compared with the other groups. Adipose cells volume in HE-OB (59.33?±?2.38 μ3?×?105) and obese (OB) (54.95?±?1.36 μ3?×?105) groups were significantly larger than control group (36.38?±?0.98 μ3?×?105). In the HE group adipocyte hyperplasia was observed, while in OB group adipocyte hypertrophy and hyperplasia was shown. The vascular reactivity in HE-OB and OB groups presented decrease in the relaxation to acetylcholine compared with control conditions (p?<?0.05), whereas the addition of NG-nitro-l-arginine methyl ester resulted in a greater inhibition of relaxation in HE-OB and OB groups compared with control conditions (p?<?0.05). These findings suggest that the dysfunction in blood vessels observed in estrogen deficiency and obesity conditions contributes to early cardiovascular alterations.  相似文献   

6.
The aim of this study was to investigate the effect of liposomes on docetaxel-induced lipid oxidization and membrane damage in human hepatoma cells. Cytotoxicity of free docetaxel and docetaxel-containing liposomes was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay in human hepatoma cell lines HepG2 and SMMC-7721. To the cell lines, blank liposomes prepared with soybean phosphatidylcholine (SPC), dimyristoylphosphocholine (DMPC), and dioleoylphosphocholine (DOPC) did not show any significant toxicity below a 0.02-mg/mL phospholipid concentration. On the other hand, free docetaxel showed IC50 values of 9.13?×?10?6?±?1.54?×?10?5 and 1.58?×?10?2?±?2.71?×?10?2 mg/mL in HepG2 cells and SMMC-7721 cells, respectively, after of 24 hours of incubation. IC50 values of docetaxel-encapsulating liposomes, measured in terms of total docetaxel concentration, were at least 1.5-fold higher than those of free docetaxel. SPC liposomes reduced cellular damage caused by free docetaxel, as evidenced by the attenuation of docetaxel-induced lactate dehydrogenase (LDH) leakage by over 11% after liposome encapsulation at each dosage. Docetaxel-induced oxidative membrane damage was monitored by the formation of the lipid peroxidation product, malondialdehyde (MDA), and the antioxidative property of SPC liposome was monitored by the suppression of superoxide dismutase (SOD). These data demonstrated that free docetaxel facilitated MDA formation and suppressed SOD, and that these membrane-damaging effects were reduced by SPC liposomes.  相似文献   

7.
Evaluation of antioxidant capacities of green microalgae   总被引:2,自引:0,他引:2  
Three strains of green microalgae, Chlorococcum sp.C53, Chlorella sp. E53, and Chlorella sp.ED53 were studied for their antioxidant activities. Crude extracts of these microalgae in hot water and in ethanol were examined for their total phenolic contents and for their antioxidant capacities. In order to determine their phenolic contents, the Folin–Ciocalteu method was used. As for the determination of their antioxidant capacities, four different assays were used: (1) total antioxidant capacity determination; (2) DPPH radical scavenging assay; (3) ferrous ion chelating ability assay; and (4) inhibition of lipid peroxidation (using thiobarbituric acid reactive substance). For all the strains we have studied, their ethanolic extract showed more antioxidant activities than their hot water extract. Categorically, the ethanolic extract of Chlorella sp.E53 exhibited both the highest total phenolic content of 35.5?±?0.14 mg gallic acid equivalent (GAE) g?1 dry weight and the highest DPPH radical scavenging of 68.18?±?0.38 % at 1.4 mg mL?1 (IC50 0.81 mg mL?1), whereas Chlorella sp.ED53 showed both the highest ferrous ion chelation activity of 42.78?±?1.48 % at 1 mg mL?1 (IC50 1.23 mg mL?1) and the highest inhibition of lipid peroxidation of 87.96?±?0.59 % at 4 mg mL?1. This high level of inhibition is comparable to 94.42?±?1.39 % of butylated hydroxytoluene, a commercial synthetic antioxidant, at the same concentration.  相似文献   

8.
This study evaluated the potential use of several Thai seaweed species for ethanol production. The high biomass of the green algae Ulva intestinalis and Rhizoclonium riparium and the red algae Gracilaria salicornia and Gracilaria tenuistipitata in an earthen pond culture led us to select these species for our study. The seaweed species were analyzed for chemical composition, resulting in ash contents of 37.62?±?0.15 % and fiber of 11.93?±?0.16 %, with the highest values in R. riparium. Low lipid values were found in all species, with the highest value (p?<?0.05) in G. salicornia (1.69?±?0.07 %) and the lowest in R. riparium (0.28?±?0.01 %) and G. tenuistipitata (0.26?±?0.01 %). The highest carbohydrate contents were found in G. tenuistipitata (54.89 %), and the lowest were in R. riparium (29.53 %). G. tenuistipitata (8.58?±?0.36 %) and U. intestinalis (8.24?±?0.28 %) had higher sulfate contents compared with G. salicornia (4.69?±?0.04 %) and R. riparium (1.97?±?0.20 %). The monosugar algal tissue components were analyzed by HPLC; rhamnose, xylose, fucose, arabinose, mannose, glucose, and galactose were used as reference sugars. Total sugar was found to be highest in G. tenuistipitata (98.21 %). Arabinose, glucose, and galactose were the main sugar components in all species. Glucose obtained from G. tenuistipitata (6.55 %) and R. riparium (6.52 %) was higher than in G. salicornia (0.27 %) and U. intestinalis (2.78 %). G. tenuistipitata fermentation gave a higher yield of ethanol (4.17?×?10?3 g ethanol g?1 sugars; 139.12 μg ethanol g?1 glucose) than R. riparium (0.086?×?10?3 g ethanol g?1 sugars; 33.84 μg ethanol g?1 glucose), U. intestinalis (0.074?×?10?3 g ethanol g?1 sugars; 9.98 μg ethanol g?1 glucose), and G. salicornia (0.031?×?10?3 g ethanol g?1 sugars; 1.43 μg ethanol g?1 glucose).  相似文献   

9.
The present study was undertaken to investigate the effect of the new formyl peptide receptor 2/lipoxin A4 receptor agonist BML-111 on acetaminophen (APAP)-induced liver injury in mice and explore its possible mechanism(s). Male Swiss albino mice were intraperitoneally injected with BML-111 (1 mg/kg) twice daily for five consecutive days prior to a single intraperitoneal injection of APAP (500 mg/kg). Results have shown that APAP injection caused liver damage as indicated by significant increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). Liver histopathological examination revealed marked necrosis and inflammation. Additionally, APAP decreased activities of hepatic glutathione (GSH) and superoxide dismutase (SOD) with significant increase in the hepatic malondialdehyde (MDA) content. Furthermore, APAP increased serum nitrite/nitrate (NO2 ?/NO3 ? ) level and hepatic tumor necrosis factor alpha (TNF-α). Pretreatment with BML-111 significantly reversed all APAP-induced pathological changes. BML-111 prevented the increase of AST, ALT, and ALP. Also, BML-111 markedly attenuated APAP-induced necrosis and inflammation. It decreased MDA with increase in SOD and GSH. Importantly, BML-111 decreased NO2 ?/NO3 ? level and TNF-α. These findings suggest that BML-111 has hepatoprotective effects against APAP-induced liver injury in mice. Its protective effect may be attributed to its ability to counteract the inflammatory ROS generation and regulate cytokine effects.  相似文献   

10.
The effect of supplementation of reduced glutathione (GSH) to cryoprotectant solution on the generation of reactive oxygen species (ROS) (e.g., H2O2, OH·, and O 2 ·? ) and antioxidants (e.g., SOD, POD, CAT, AsA, and GSH), as well as membrane lipid peroxidation (i.e., MDA content) mitigation in cryopreserving of embryogenic calli (EC) of Agapanthus praecox subsp. orientalis was investigated. The vitrification-based cryopreservation method was used in this study. The addition of GSH at a final concentration of 0.08 mM to the cryoprotectant solution has significantly improved cryotolerance of A. praecox EC. The EC post-thaw survival rate increased by 68.34 % using the cryoprotectant solution containing 0.08 mM GSH as compared to the control (GSH-free). EC treated with GSH displayed the reduction in  OH· generation activity and the contents of H2O2 and MDA, as well as enhancement in the inhibition of O 2 ·? generation and the antioxidant activity. Treatment with exogenous GSH also increased endogenous AsA and GSH contents after dehydration step. Expression of stress-responsive genes, e.g., peroxidase (POD), peroxiredoxin, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and glutathione peroxidase (GPX), was also increased during cryopreservation processes. The expression of DAD1 (Defender against apoptotic cell death) was elevated, while cell death-related protease SBT was suppressed. These results demonstrated that the addition of GSH to cryoprotectant solution affects the ROS level and could effectively improve survival of A. praecox EC through enhancing antioxidant enzyme activities and decreasing cell death.  相似文献   

11.
Sugar transport is very critical in developing an efficient and rapid conversion process of a mixture of sugars by engineered microorganisms. By using expressed sequence tag data generated for the fructophilic yeast Candida magnoliae JH110, we identified two fructose-specific transporters, CmFSY1 and CmFFZ1, which show high homology with known fructose transporters of other yeasts. The CmFSY1 and CmFFZ1 genes harbor no introns and encode proteins of 574 and 582 amino acids, respectively. Heterologous expression of the two fructose-specific transporter genes in a Saccharomyces cerevisiae, which is unable to utilize hexoses, revealed that both transporters are functionally expressed and specifically transport fructose. These results were further corroborated by kinetic analysis of the fructose transport that showed that CmFsy1p is a high-affinity fructose–proton symporter with low capacity (K M?=?0.13?±?0.01 mM, V max?=?2.1?±?0.3 mmol h?1 [gdw]?1) and that CmFfz1p is a low-affinity fructose-specific facilitator with high capacity (K M?=?105?±?12 mM, V max?=?8.6?±?0.7 mmol h?1 [gdw]?1). These fructose-specific transporters can be used for improving fructose transport in engineered microorganisms for the production of biofuels and chemicals from fructose-containing feedstock.  相似文献   

12.
The effect of 0.5–1.5 mM salicylic acid (SA) on modulating reactive oxygen species metabolism and ascorbate–glutathione cycle in NaCl-stressed Nitraria tangutorum seedlings was investigated. The individual plant fresh weight (PFW) and plant dry weight (PDW) significantly increased under 100 mM NaCl while remained unchanged or decreased under 200–400 mM NaCl compared to the control. Superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), reduced ascorbate (AsA), dehydroascorbate (DHA), reduced glutathione (GSH) and oxidized glutathione (GSSG) increased whereas the ratios of AsA/DHA and GSH/GSSG decreased under varied NaCl treatments. Ascorbate peroxidase (APX) and glutathione reductase (GR) activities were enhanced while dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities remained unvaried under 100–400 mM NaCl stresses. In addition, exogenous SA further increased PFW, PDW and root/shoot ratio. SA effectively diminished O 2 ·? accumulation. H2O2 and TBARS decreased under 0.5 and 1.0 mM SA treatments compared to those without SA. 0.5 mM of SA increased while 1.0 and 1.5 mM SA decreased APX activities. DHAR activities were elevated by 0.5 and 1.0 mM SA but not by 1.5 mM SA. MDHAR and GR activities kept constant or significantly increased at varying SA concentrations. Under SA treatments, AsA and GSH contents further increased, DHA and GSSG levels remained unaltered, while the decreases in AsA/DHA and GSH/GSSG ratios were inhibited. The above results demonstrated that the enhanced tolerance of N. tangutorum seedlings conferred by SA could be attributed mainly to the elevated GR and DHAR activities as well as the increased AsA/DHA and GSH/GSSG ratios.  相似文献   

13.
Invertase converts sucrose to glucose and fructose. The reaction mechanism for the formation of glucose and fructose was studied by stopped flow spectrophotometer and circular dichroism. The reaction mechanism follows biphasic mode with rate constants of k10.0053 s?1?±?0.001 s?1 and k2 0.030 s?1?±?0.01 s?1 for 25 mM concentration of sucrose. Far UV circular dichroic spectrum of invertase in presence of sucrose shows 18 % increase in β conformation as a function of time. Taken together, the invertase hydrolysis follows biphasic mode where it undergoes conformational changes followed by hydrolysis of the sucrose.  相似文献   

14.
Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO2 addition. Here, we uncouple the effects of pH and CO2 input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19?±?0.008 and 0.19?±?0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6?×?106?±?9?×?106 cells mL?1 for pH 8 and 92.8?×?106?±?24?×?106 cells mL?1 for pH 9). Lipid accumulation of unbuffered controls were 21.8?±?5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9?±?39.6?×?104 organisms mL?1) than higher pH treatments (0.1–6.8?×?104 organisms mL?1). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7?±?5.1?×?104 organisms mL?1) than any of the pH treatments (3.6–4.7?×?104 organisms mL?1). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO2 addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH.  相似文献   

15.
Various inhibitors were tested for their inhibitory effects on soybean urease. The Ki values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20?±?0.05?mM, 0.22?±?0.04?mM, 1.50?±?0.10?mM, and 2.00?±?0.11?mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag+, Hg2+, and Cu2+ showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC50 = 2.3?×?10?8 mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO3, and Na2SO4) showed that only F? inhibited soybean urease significantly (IC50 = 2.9?mM). Competitive type of inhibition was observed for this anion with a Ki value of 1.30?mM.  相似文献   

16.

Background

Although plant growth in alpine steppes on the Tibetan Plateau has been suggested to be sensitive to nitrogen (N) addition, the N limitation conditions of alpine steppes remain uncertain.

Methods

After 2 years of fertilization with NH4NO3 at six rates (0, 10, 20, 40, 80 and 160 kg N ha?1 yr?1), the responses of plant and soil parameters as well as N2O fluxes were measured.

Results

At the vegetation level, N addition resulted in an increase in the aboveground N pool from 0.5?±?0.1 g m?2 in the control plots to 1.9?±?0.2 g m?2 in the plots at the highest N input rate. The aboveground C pool, biomass N concentration, foliar δ15N, soil NO3 ?-N and N2O flux were also increased by N addition. However, as the N fertilization rate increased from 10 kg N ha?1 yr?1 to 160 kg N ha?1 yr?1, the N-use efficiency decreased from 12.3?±?4.6 kg C kg N?1 to 1.6?±?0.2 kg C kg N?1, and the N-uptake efficiency decreased from 43.2?±?9.7 % to 9.1?±?1.1 %. Biomass N:P ratios increased from 14.4?±?2.6 in the control plots to 20.5?±?0.8 in the plots with the highest N input rate. Biomass N:P ratios, N-uptake efficiency and N-use efficiency flattened out at 40 kg N ha?1 yr?1. Above this level, soil NO3 ?-N began to accumulate. The seasonal average N2O flux of growing season nonlinearly increased with increased N fertilization rate and linearly increased with the weighted average foliar δ15N. At the species level, N uptake responses to relative N availability were species-specific. Biomass N concentration of seven out of the eight non-legume species increased significantly with N fertilization rates, while Kobresia macrantha and the one legume species (Oxytropics glacialis) remained stable. Both the non-legume and the legume species showed significant 15N enrichment with increasing N fertilization rate. All non-legume species showed significant increased N:P ratios with increased N fertilization rate, but not the legume species.

Conclusions

Our findings suggest that the Tibetan alpine steppes might be N-saturated above a critical N load of 40 kg N ha?1 yr?1. For the entire Tibetan Plateau (ca. 2.57 million km2), a low N deposition rate (10 kg N ha?1 yr?1) could enhance plant growth, and stimulate aboveground N and C storage by at least 1.1?±?0.3 Tg N yr?1 and 31.5?±?11.8 Tg C yr?1, respectively. The non-legume species was N-limited, but the legume species was not limited by N.  相似文献   

17.
Sphaerophysa kotschyana is a Turkish endemic and endangered plant that grows near Salt Lake, in Konya, Turkey. However, little is known about the ability of this plant to generate/remove reactive oxygen species (ROS) or its adaptive biochemical responses to saline environments. After exposure of S. kotschyana to 0, 150, and 300 mM NaCl for 7 and 14 days, we investigated (1) the activities and isozyme compositions of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), and glutathione reductase (GR); (2) the oxidative stress parameters NADPH oxidase (NOX) activity, lipid peroxidation (MDA), total ascorbate (tAsA) content, and total glutathione content (tGlut); and (3) ROS levels for superoxide anion radical (O 2 ·? ), hydrogen peroxide (H2O2), hydroxyl radicals (OH·), and histochemical staining of O 2 ·? and H2O2. H2O2 content increased after 14 days of salt stress, which was consistent with the results from histochemical staining and NOX activity measurements. In contrast, oxidative stress induced by 150 mM NaCl was more efficiently prevented, as indicated by low malondialdehyde (MDA) levels and especially at 7 days, by increased levels of SOD, POX, APX, and GR. However, at 300 mM NaCl, decreased levels of protective enzymes such as SOD, CAT, POX, and GR, particularly with long-term stress (14 days), resulted in limited ROS scavenging activity and increased MDA levels. Moreover, at 300 mM NaCl, the high H2O2 content caused oxidative damage rather than inducing protective responses against H2O2. These results suggest that S. kotschyana is potentially tolerant to salt-induced damage only at low salt concentrations.  相似文献   

18.
Kinetic studies of two glucosylation reactions catalyzed by an amyloglucosidase from Rhizopus sp. leading to the synthesis of vanillin-α/β-D-glucoside from D-glucose and vanillin and curcumin-bis-α-D-glucoside from D-glucose and curcumin were investigated in detail. Initial reaction rates were determined from kinetic runs involving different concentrations of D-glucose and vanillin (5?mM to 0.1?M) or D-glucose and curcumin (5?mM to 0.1?M). Graphical double reciprocal plots showed that the kinetics of the two enzyme catalyzed reactions exhibited Ping-Pong Bi-Bi mechanism where competitive substrate inhibition by vanillin/curcumin led to dead-end amyloglucosidase–vanillin/curcumin complexes at higher concentrations of vanillin/curcumin. An attempt to obtain the best fit of this kinetic model through computer simulation yielded in good approximation, the values of four important kinetic parameters, vanillin-α/β-D-glucoside: kcat=35.0±3.2 10?5M?h?1·mg, Ki=10.5±1.1?mM, KmD-glucose=60.0±6.2?mM, Kmvanillin=50.0±4.8?mM; curcumin-bis-α-D-glucoside: kcat=6.07±0.58 10?5M?h?1·mg, Ki=3.0±0.28?mM, KmD-glucose=10.0±0.9?mM, Kmcurcumin=4.6±0.5?mM.  相似文献   

19.
Salinity stress affects many metabolic facets of plants and induces anatomical and morphological changes resulting in reduced growth and productivity. To overcome the damaging effects of salinity, different strategies of the application of nutrients with plant hormones are being adopted. The present study was carried out with an aim to find out whether application of calcium chloride (CaCl2) and gibberellic acid (GA3) could alleviate the detrimental effects of salinity stress on plant metabolism. Fifteen days old plants were supplied with (1) 0 mM NaCl + 0 mg CaCl2 kg?1 sand + 0 M GA3 (control, T0); (2) 0 mM NaCl + 10 mg CaCl2 kg?1 sand + 0 M GA3 (T1); (3) 0 mM NaCl + 0 mg CaCl2 kg?1 sand + 10?6 M GA3 (T2); (4) 150 mM NaCl + 0 mg CaCl2 kg?1 sand + 0 M GA3 (T3); (5) 150 mM NaCl + 10 mg CaCl2 kg?1 sand + 0 M GA3 (T4); (6) 150 mM NaCl + 0 mg CaCl2 kg?1 sand + 10?6 M GA3 (T5); (7) 150 mM NaCl + 10 mg CaCl2 kg?1 sand + 10?6 M GA3 (T6). To assess the response of the crop to NaCl, CaCl2 and GA3, plants were uprooted randomly at 60 days after sowing. The presence of NaCl in the growth medium decreased all the growth and physio-biochemical parameters, except electrolyte leakage, proline (Pro) and glycine betaine (GB) content, thiobarbituric acid reactive substances (TBARS), H2O2 content, activities of superoxide dismutase (SOD) and catalase (CAT) and leaf Na content, which exhibited an increase of 37.6, 29.3, 366.9, 107.5, 59.1, 17.1, 28.4 and 255.2%, respectively, compared to the control plants. However, application of CaCl2 in combination with GA3 appears to confer greater osmoprotection by the additive role with NaCl in Pro and GB accumulation. Although the activities of antioxidant enzymes (SOD, CAT and POX) were increased by salt stress, the combined application of CaCl2 and GA3 to salt-stressed plants further enhanced the activities of these enzymes by 25.1, 6.7 and 47.8%, respectively, compared to plants grown with NaCl alone. The present study showed that application of CaCl2 and GA3 alone as well as in combination mitigated the adverse effect of salinity, but combined application of these treatments proved more effective in alleviating the adverse effects of NaCl stress.  相似文献   

20.
This study addresses factors governing nitrification and denitrification rates, along with the abundance of the bacterial groups likely involved in these activities, in Kongsfjorden, an Arctic fjord at Ny-Ålesund, Svalbard. The fjord was sampled three times during the month of March 2008 as day length and direct solar radiation increased. Although initially well mixed, cooler and more saline, the fjord became stratified, warmer and less saline during late March. The concentrations of NH4 + (4.4?±?1.6 to 6?±?1.6 μM) and NO2 ? (1?±?0.3 to 1.2?±?0.4 μM) increased progressively with the decrease in NO3 ? (6.1?±?1.3 to 3.8?±?1.5 μM), reflecting the onset of primary productivity. Nitrification rates and the culturable population of nitrifiers decreased significantly from 1.6?±?0.9 to 0.4?±?0.1 ng at NH4 +-N l?1 h?1 and 5.1?±?0.3?×?102 to 29?±?14 cells l?1, respectively. In contrast, denitrification rates increased (2.4?±?0.5 to 4.6?±?1.3 ng-at NO3 ?-N l?1 h?1), although the abundance of culturable denitrifiers did not vary significantly. A significant correlation of nitrifiers with NO3 ? during early March (p?<?0.01, r?=?0.51) indicated that nitrifiers may play an important role in regulating the NO3 ? pool and thereby in controlling the abundance of denitrifiers. However, the contribution of nitrification to the total NO3 ? pool decreased with time. Experimental simulations were also set up to understand the impact of change in duration of light and progressive increase in temperature on these processes. The application of 24 h light inhibited nitrification, suggesting that during peak Arctic summer the contribution of nitrification to the nitrate pool is minimal. It was also observed that a brief exposure to light (≤6 h) was enough to hamper nitrification rates. Experimental simulations suggested that a gradual increase in temperature in the fjord may enhance the magnitude of nitrification and denitrification in the fjord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号