首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Cardin JA  Palmer LA  Contreras D 《Neuron》2008,59(1):150-160
Gain modulation is a widespread neuronal phenomenon that modifies response amplitude without changing selectivity. Computational and in vitro studies have proposed cellular mechanisms of gain modulation based on the postsynaptic effects of background synaptic activation, but these mechanisms have not been studied in vivo. Here, we used intracellular recordings from cat primary visual cortex to measure neuronal gain while changing background synaptic activity with visual stimulation. We found that increases in the membrane fluctuations associated with increases in synaptic input do not obligatorily result in gain modulation in vivo. However, visual stimuli that evoked sustained changes in resting membrane potential, input resistance, and membrane fluctuations robustly modulated neuronal gain. The magnitude of gain modulation depended critically on the spatiotemporal properties of the visual stimulus. Gain modulation in vivo may thus be determined on a moment-to-moment basis by sensory context and the consequent dynamics of synaptic activation.  相似文献   

6.
In the skin of humans and rodents, local pressure induces localized cutaneous vasodilation, which may be protective against pressure-induced microvascular dysfunction and lesion formation. Once activated by the local pressure application, capsaicin-sensitive nerve fibers release neuropeptides that act on the endothelium to synthesize and release nitric oxide (NO) and prostaglandins, leading to the development of the cutaneous pressure-induced vasodilation (PIV). The present study was undertaken to test in vivo the hypothesis that PIV is mediated or modulated by differential activation of K+ channels in anesthetized rats using pharmacological methods. Local pressure was applied at 11.1 Pa/s. Endothelium-independent and -dependent vasodilation were tested using iontophoretic delivery of sodium nitroprusside (SNP) and acetylcholine (ACh), respectively, and was correlated with PIV response. PIV was reduced after systemic administration of tetraethylammonium (a nonspecific K+ channel blocker), iberiotoxin [a specific large-conductance Ca2+-activated K+ (BKCa) channel blocker], and glibenclamide [a specific ATP-sensitive K+ (KATP) channel blocker], whereas PIV was unchanged by apamin (a specific small-conductance Ca2+-activated K+ channel blocker) and 4-aminopyridine (a specific voltage-sensitive K+ channel blocker). The responses to SNP and ACh were reduced by iberiotoxin but were unchanged by glibenclamide. We conclude that the cellular mechanism of PIV in skin involves BKCa and KATP channels. We suggest that the opening of BKCa and KATP channels contributes to the hyperpolarization of vascular smooth muscle cells to produce PIV development mainly via the NO and prostaglandin pathways, respectively.  相似文献   

7.
Cardioprotection by intermittent high-altitude (IHA) hypoxia against ischemia-reperfusion (I/R) injury is associated with Ca(2+) overload reduction. Phospholamban (PLB) phosphorylation relieves cardiac sarcoplasmic reticulum (SR) Ca(2+)-pump ATPase, a critical regulator in intracellular Ca(2+) cycling, from inhibition. To test the hypothesis that IHA hypoxia increases PLB phosphorylation and that such an effect plays a role in cardioprotection, we compared the time-dependent changes in the PLB phosphorylation at Ser(16) (PKA site) and Thr(17) (CaMKII site) in perfused normoxic rat hearts with those in IHA hypoxic rat hearts submitted to 30-min ischemia (I30) followed by 30-min reperfusion (R30). IHA hypoxia improved postischemic contractile recovery, reduced the maximum extent of ischemic contracture, and attenuated I/R-induced depression in Ca(2+)-pump ATPase activity. Although the PLB protein levels remained constant during I/R in both groups, Ser(16) phosphorylation increased at I30 and 1 min of reperfusion (R1) but decreased at R30 in normoxic hearts. IHA hypoxia upregulated the increase further at I30 and R1. Thr(17) phosphorylation decreased at I30, R1, and R30 in normoxic hearts, but IHA hypoxia attenuated the depression at R1 and R30. Moreover, PKA inhibitor H89 abolished IHA hypoxia-induced increase in Ser(16) phosphorylation, Ca(2+)-pump ATPase activity, and the recovery of cardiac performance after ischemia. CaMKII inhibitor KN-93 also abolished the beneficial effects of IHA hypoxia on Thr(17) phosphorylation, Ca(2+)-pump ATPase activity, and the postischemic contractile recovery. These findings indicate that IHA hypoxia mitigates I/R-induced depression in SR Ca(2+)-pump ATPase activity by upregulating dual-site PLB phosphorylation, which may consequently contribute to IHA hypoxia-induced cardioprotection against I/R injury.  相似文献   

8.
Age is the strongest independent risk factor for the development of osteoarthritis (OA) and for many years this was assumed to be due to repetitive microtrauma of the joint surface over time, the so-called ‘wear and tear’ arthritis. As our understanding of OA pathogenesis has become more refined, it has changed our appreciation of the role of ageing on disease. Cartilage breakdown in disease is not a passive process but one involving induction and activation of specific matrix-degrading enzymes; chondrocytes are exquisitely sensitive to changes in the mechanical, inflammatory and metabolic environment of the joint; cartilage is continuously adapting to these changes by altering its matrix. Ageing influences all of these processes. In this review, we will discuss how ageing affects tissue structure, joint use and the cellular metabolism. We describe what is known about pathways implicated in ageing in other model systems and discuss the potential value of targeting these pathways in OA.  相似文献   

9.
10.
11.
Elevation of cytosolic level of Ca(2+) was measured by spatial screening of freshly isolated dorsal root ganglion neurons loaded with Fura-2AM after subjecting them to a moderate hypoxic solution (pO(2)=10-40 mmHg). Short exposure of neurons to hypoxia resulted in a reversible elevation of intracellular Ca(2+) to about 120% in the cell center and to 80% in the cell periphery. Such elevation could be almost completely eliminated by removal of Ca(2+) or Na(+) from external medium or application of nifedipine, an L-type calcium channel blocker. Remarkable antihypoxic efficiency (58%) was achieved by preapplication of mitochondrial protonophore CCCP. A conclusion is made that in sensory neurons the hypoxia-induced elevation of cytosolic Ca(2+) is induced by combined changes of function in three cell substructures: voltage-operated L-type Ca(2+) and Na(+) channels and Ca(2+) accumulation by mitochondria. Mitochondria are important for spatial difference in the hypoxia-induced Ca(2+) elevation due to their specific location in these neurons.  相似文献   

12.
Our previous study suggested that calpain isoforms played an important role in retinal ganglion cell death induced by ischemia-reperfusion in rats [Curr. Eye Res. 21 (2000) 571]. The purpose of the present study was to further establish the direct involvement of calpain in hypoxia-induced damage by administering calpain inhibitor SJA6017 to oxygen-starved, cultured retinas. Retinas were incubated in RPMI medium with glucose and 95% O2/5% CO2 to supply sufficient oxygen for retinal cell survival. To induce a hypoxic condition, retinas were incubated with 95% N2/5% CO2. Leakage of LDH in the medium was measured to assess retinal cell damage. Activation of calpain and proteolysis of calpain substrate alpha-spectrin were analyzed by casein zymography and immunoblotting. Large amounts of LDH leaked into the medium from retinas under hypoxic conditions for 12 h, and SJA6017 significantly reduced LDH leakage. Caseinolytic activity of mu- and m-calpains decreased with hypoxia for 5 and 12 h, suggesting calpain activation followed by autolytic degradation. SJA6017 partially inhibited decreased calpain activities. Proteolysis of 230 kDa alpha-spectrin to 150 and 145 kDa breakdown products was observed in retinas with hypoxia. SJA6017 completely inhibited production of the 145 kDa breakdown product and partially inhibited production of the 150 kDa breakdown product. These results confirm the direct involvement of calpains in retinal cell damage induced by hypoxia in vitro.  相似文献   

13.

1. There are differences between warm sensitive and temperature insensitive neurons in the rostral hypothalamus.

2. In warm sensitive neurons, temperature affects the rate of depolarization in prepotentials that precede action potentials. Warming increases the depolarization rate, which shortens the interspike interval and increases firing rate.

3. Inactivation of the potassium A current is temperature sensitive and contributes to the depolarizing prepotential.

4. In addition to intrinsic mechanisms, neuronal warm-sensitivity is affected by inhibitory synaptic input. Since cooling increases neuronal resistance, temperature affects the amplitude of postsynaptic inhibitory potentials, and this enhances neuronal thermosensitivity.

Author Keywords: Hypothalamus; Preoptic; Thermosensitive neuron; Synapse; GABA; Electrophysiology  相似文献   


14.
Pharmacological studies in prairie voles have suggested that the neuropeptides oxytocin and vasopressin play important roles in behaviors associated with monogamy, including affiliation, paternal care, and pair bonding. Our laboratory has investigated the cellular and neuroendocrine mechanisms by which these peptides influence affiliative behavior and social attachment in prairie voles. Monogamous prairie voles have a higher density of oxytocin receptors in the nucleus accumbens than do nonmonogamous vole species; blockade of these receptors by site-specific injection of antagonist in the female prairie vole prevents partner preference formation. Prairie voles also have a higher density of vasopressin receptors in the ventral pallidal area, which is the major output of the nucleus accumbens, than montane voles. Both the nucleus accumbens and ventral pallidum are key relay nuclei in the brain circuits implicated in reward, such as the mesolimbic dopamine and opioid systems. Therefore, we hypothesize that oxytocin and vasopressin may be facilitating affiliation and social attachment in monogamous species by modulating these reward pathways.  相似文献   

15.
Mistranslation broadly encompasses the introduction of errors during any step of protein synthesis, leading to the incorporation of an amino acid that is different from the one encoded by the gene. Recent research has vastly enhanced our understanding of the mechanisms that control mistranslation at the molecular level and has led to the discovery that the rates of mistranslation in vivo are not fixed but instead are variable. In this Review we describe the different steps in translation quality control and their variations under different growth conditions and between species though a comparison of in vitro and in vivo findings. This provides new insights as to why mistranslation can have both positive and negative effects on growth and viability.  相似文献   

16.
Subcellular mobility, positioning, and directional movement of the nucleus in a certain site of the cell or cenocyte and, less frequently, intercellular translocation of the nucleus accompany the cell and tissue differentiation, change of their functions, and the organism growth and development and its response to stress, plant–microbial interactions, symbiosis, and many other processes in plants and animals. The nucleus movement is performed and directed through the interaction between dynamic cytoskeleton components and nucleus by means of signal-binding proteins, including motor and linker. The cell responds to the external signal by mobilization and polar reconstruction of the cytoskeleton components, as a result of which the nucleus displacement by means of actomyosin or microtubule mechanisms in cooperation with dynein and kinesin occurs. In plants, the actomyosin mechanism is involved in the nucleus migration; it allows the nucleus to move rapidly and over significant distances in response to environmental stimuli. An important role in the nucleus translocation belongs to the linker complexes of the proteins that are inserted in the nuclear envelope, that connect and transmit signals from the plasmalemma to the cytoplasm and nucleoplasm, and that provide the skeletal basis for many subcellular compartments. Changes in the protein composition, conformational modifications of the proteins, and displacement of linkers from the nuclear envelope result in the nucleus detachment from the cytoskeleton, and change in the form, mechanical rigidity, and positioning of the nucleus.  相似文献   

17.
Data on intracellular processes induced by a low glucose level in nerve tissue are presented. The involvement of glutamate and adenosine receptors, mitochondria, reactive oxygen species (ROS), and calcium ions in the development of hypoglycemia-induced damage of neurons is considered. Hypoglycemia-induced calcium overload of neuronal mitochondria is suggested to be responsible for the increased ROS production by mitochondria.  相似文献   

18.
Cellular senescence mechanisms in chronic wound healing   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
The mechanisms of tumor rejection by cell-mediated immunity were reviewed in a rat autochthonous and syngeneic tumor-host system. The immune system could mediate a complete regression of autochthonous tumor if the tumor cells were immunogenic. Neutrophils and macrophages first appeared following transplantation of autochthonous tumor. Lymphocytes increased in the tumor tissue as the tumor began to show regression. Degenerated tumor tissue was infiltrated by macrophages and plasma cells. The identification of rat hematopoietic cells including various subsets of lymphocytes and inflammatory cells became possible owing to a variety of monoclonal antibodies reacting with these cells. Major populations of tumor-infiltrating lymphocytes (TIL) were found to be R1-3B3 (CD5)- and R1-10B5 (CD8)-positive cells in methylcholanthrene-induced autochthonous tumor. These CD5- and CD8-positive lymphocytes were also recognized in an N-nitrosourea-induced syngeneic tumor-host system and actually showed specific cytotoxicity against tumor cells in vitro. Macrophages were recognized in tumor tissues more predominantly in the early and terminal phase of tumor rejection; their functions are still uncertain but they are considered to have important immunomodulatory effects. A variety of cytokines were thought to play an important role in augmenting host immunity to achieve tumor rejection. Neutrophils in the tumor tissue were shown to produce a factor attracting lymphocytes to the tumor site, which was designated as lymphocyte migration factor. Subsequently, activities of colony-stimulating factor, interleukin-1, -2, and -3, and cytotoxic-T-cell-generating factor (CGF), which induces final maturation of cytotoxic T cells, were detected at the tumor site as well as in the regional lymph nodes and the spleen. CGF was found to be produced by W3/25 (CD4)-positive T cells. Lymphocytes residing in the spleen of the immune rats did not show cytotoxic activity against tumor cells but significant tumor lysis activity was recognized with TIL. This suggests that lymphocytes may achieve maturation after they leave the spleen. Cellular reactions occurring at the tumor site were enhanced at each step by various cytokines produced by lymphocytes as well as by inflammatory cells. This cytokine cascade seems to be essential for obtaining a sufficient immune response for tumor rejection. When an established T9 subcutaneous tumor with a diameter of 10 mm was treated by intratumoral infusion of lymphokine-activated killer (LAK) cells, the tumor showed complete regression after 2-3 weeks of transient growing.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号