首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is increasing awareness of the link between impaired circadian clocks and multiple metabolic diseases. However, the impairment of the circadian clock by type 2 diabetes has not been fully elucidated. To understand whether and how the function of circadian clock is impaired under the diabetic condition, we examined not only the expression of circadian genes in the heart and pineal gland but also the behavioral rhythm of type 2 diabetic and control rats in both the nighttime restricted feeding (NRF) and daytime restricted feeding (DRF) conditions. In the NRF condition, the circadian expression of clock genes in the heart and pineal gland was conserved in the diabetic rats, being similar to that in the control rats. DRF shifted the circadian phases of peripheral clock genes more efficiently in the diabetic rats than those in the control rats. Moreover, the activity rhythm of rats in the diabetic group was completely shifted from the dark phase to the light phase after 5 days of DRF treatment, whereas the activity rhythm of rats in the control group was still under the control of the suprachiasmatic nucleus (SCN) after the same DRF treatment. Furthermore, the serum glucose rhythm of type 2 diabetic rats was also shifted and controlled by the external feeding schedule, ignoring the SCN rhythm. Therefore, DRF shows stronger effect on the reentrainment of circadian rhythm in the type 2 diabetic rats, suggesting that the circadian system in diabetes is unstable and more easily shifted by feeding stimuli.  相似文献   

2.
3.
Corticosterone levels were determined in the 7-week-old male rat maintained under different feeding and lighting schedules. At 4 weeks of age, the animals were kept either under a natural photoperiod (LD) or were subjected to continuous illumination (LL). Access to food was either ad libitum or restricted to an 8 hr span per 24 hr (circadian) or 32 hr (acircadian).

The food signal seemed able to synchronize the corticosterone rhythm to its own circadian periodicity, irrespective of the lighting regimen. No synchronization was observed in serially sampled LL or LD rats under an acircadian feeding schedule. Instead, the group acrophase appeared 24 hr subsequent to food presentation. Regarding individual patterns, many rats showed an acrophase or a peak also at that time. We speculate that an endogenous circadian mechanism was reset by the food signal, whenever it appeared.  相似文献   

4.
ABSTRACT

Experimental studies indicate that energy homeostasis to the circadian clock at the behavioral, physiological, and molecular levels, emphasize that timing of food intake may play a significant role in the development of obesity and central obesity. Therefore, resetting the circadian clock by circadian energy restriction via food intake in the morning or evening, may be used as a new approach for prevention of obesity, metabolic syndrome and related diseases. After ethical clearance and written, informed consent, free living subjects were included if they volunteered to take most of the total daily meals (approximately 2000 Kcal./day) in the evening (4 weeks) or morning (4 weeks). Of 22 adults, half were randomly selected by computer generated numbers to eat in the morning and the other half in the evening, after 8.00 PM. The eating pattern was changed after 4 weeks of intervention and a 4-week washout period, those who ate in the morning were advised to eat in the evening and vice versa. Validated questionnaires were used to assess food intakes, physical activity, and intake of alcohol and tobacco. Physical examination included measurement of body weight, height, and blood pressure (BP) by sphygmomanometer. Data were regularly recorded blindly, in all subjects at start of study and during follow-up. Blood samples were collected after an overnight fast for analysis of blood glucose and Hb1c. Feeding in the evening was associated with significant increase in body weight by 0.80 kg (P < .001), body mass index (BMI) by 0.30 kg/m2 (P < .001) and waist circumference by 1.13 cm (P < .05). Feeding the same amount of energy in the morning was not associated with any significant change in weight, BMI or waist circumference (P > .500). Lesser increases in all three variables were associated with AM versus PM feeding (P < .05). Systolic BP slightly increased on PM and decreased on AM feeding, with a difference between the two responses of 1.55 mmHg (P < .05). Fasting blood glucose was lower on AM than on PM feeding (74.86 vs. 77.95 mg/dl, paired t = 4.220, P < .001). Hb1C increased on PM feeding by 0.28 (from 4.45 to 4.73; t = 9.176, P < .001), but decreased on AM feeding by 0.077 (from 4.53 to 4.45; t = ?6.859, P < .001). The difference in Hb1C response between AM and PM feeding is also statistically significant (t = ?11.599, P < .001). Eating in the evening can predispose to obesity, central obesity and increases in fasting blood glucose and Hb1c that are indicators of the metabolic syndrome. By contrast, eating in the morning can decrease Hb1c and systolic BP, indicating that it may be protective against the metabolic syndrome.  相似文献   

5.
Halaban R 《Plant physiology》1969,44(7):973-977
Studies were made of the effects of blue, green, red and far-red (FR) light on the circadian rhythm of leaf movement of Coleus blumei × C. frederici, a short day plant. Under continuous illumination with blue light, there was a significant lengthening of the period of the rhythm to about 24.0 hr, as compared to 22.5 hr in continuous darkness. Under continuous red light, the period length was significantly shortened to 20.5 hr. Under continuous green or FR, the period length was not significantly different from the dark control. It was observed that under continuous FR illumination, the leaves tended to oscillate in a more downward position. Eight-hr red light signals were effective in advancing the phase of the rhythm as compared to a control under continuous green light. Blue light signals were effective in delaying the phase of the rhythm. FR light signals were ineffective in producing either delay or advance phase shifts. Far-red light did not reverse the effects of either red or blue light signals. On the basis of these results it is suggested, that pigments which absorb blue or red light, rather than phytochrome, mediate the effect of light on the circadian rhythm of leaf movement.  相似文献   

6.
In estimating, by use of cosinor-test, the 12- and 24-h component parameters of body temperature circadian rhythm in monkeys under ultradian schedules of lighting and feeding (LD 6:6; DL 6:6) we have shown that an intensive 12-h component is registered in both cases. The presence of a 24-h component of circadian rhythm depends on the zeitgeber phase. This component is present in LD 6:6 (lighting hours 07:00-13:00 and 19:00-01:00) and is absent in DL 6:6 (01:00-07:00 and 13:00-19:00). We hold that the most satisfactory explanation of the phenomena observed is that 12-h component is the result of a masking effect induced by the 12-h schedule (exogenous component) whereas the 24-h component reflects the intrinsic pacemaker work (endogenous component). It should be noted that in our case the masking effect in body temperature rhythm is circadian phase-dependent.  相似文献   

7.
According to the Aschoff's role, exposure to continuous light (LL) results in the elongation of the free-running period of the rat circadian rhythm. However, the LL may not always mean the constant intensity of the light for the suprachiasmatic nucleus, since the rat may regulate the contrast of the illumination by their eyelids which are closed during the sleep phase. In this study, the surgical removal of the eyelids under the LL caused arrhythmicity of the locomotor activity in 7 of 10 rats. The remaining 3 rats maintained the free-running rhythm after the removal of the eyelids. These results suggest that constant light may affect the free-running rhythm of the rat with or without eyelids in the different manner.  相似文献   

8.
We investigated how exposure to bisphenol A (BPA) under different photoperiodic conditions affected the expression of clock genes in the brain and liver of the goldfish, Carassius auratus. Three photoperiodic conditions were used: control, LD; continuous light, LL; and continuous dark, DD; the fish were exposed to three concentrations of BPA, namely 0, 10, or 100 μg/L. We measured changes in the expression of cryptochrome 1 (Cry1), period 2 (Per2), and melatonin receptor 1 (MT-R1). The levels of Cry1, Per2, and MT-R1 mRNAs decreased with increasing BPA concentration and with increasing exposure time. Expression of Cry1 and Per2 increased more in the LL group than in the LD and DD groups. However, for MT-R1, the DD group showed increased expression compared to the LL and LD groups. Our analysis shows that circadian rhythms in goldfish can be disrupted by exposure to BPA and that the response can be modified by regulating the photoperiod.  相似文献   

9.
The objective of this work was to study the effect of early weaning on circadian rhythm and the behavioral satiety sequence in adult rats. Male Wistar rat pups were weaned for separation from the mother at 15 (D15), 21 (D21) and 30 (D30) days old. Body weight and food intake was measured every 30 days until pups were 150 days old. At 90 days of age, the circadian rhythm of food intake was evaluated every 4 h for three days. Behavioral satiety was evaluated at 35 and 100 days of age. This work demonstrated that body weight and food intake were not altered, but the behavioral satiety sequence demonstrated that the D15 group delayed satiety compared with the D30 group at 100 days of age. In the circadian rhythm of the food intake study, early weaning (D15) changed food intake in the intermediary period of the light phase and in the intermediary period of the dark phase. In conclusion, our study showed that early weaning may alter the feeding behavior mainly in relation to satiety and the circadian rhythm of feeding. It is possible that the presence of other environmental stimuli during early weaning can cause hyperphagia and deregulate the mechanisms of homeostasis and body weight control. This study supports theories that depict insults during early life as determinants of chronic diseases.  相似文献   

10.
  • 1.1. Crayfish subjected to constant darkness and temperature displayed an electroretinographic circadian rhythm with both non-polarized and polarized light stimuli.
  • 2.2. In the ERG circadian rhythm associated with polarized light there was an observed reduction in period and increment in both amplitude and activity: rest ratio.
  • 3.3. The change from non-polarized to polarized light also produced phase advances or delays in the ERG circadian rhythm depending on the circadian time when the change was introduced.
  • 4.4. Separate recording of HI and HII ERG components showed that HII is always less conspicuous and more easily saturable than HI circadian rhythm.
  • 5.5. These results support that: (a) the detection of polarized light contributes to extend the differences between night and day; (b) the two structures involved in the generation of HI and HII ERG components, i.e. the rhabdom and the retinular cell, operate as two independent elements of the circadian system responsible of ERG circadian rhythm.
  相似文献   

11.
Light is necessary for life, and artificial light improves visual performance and safety, but there is an increasing concern of the potential health and environmental impacts of light. Findings from a number of studies suggest that mistimed light exposure disrupts the circadian rhythm in humans, potentially causing further health impacts. However, a variety of methods has been applied in individual experimental studies of light-induced circadian impacts, including definition of light exposure and outcomes. Thus, a systematic review is needed to synthesize the results. In addition, a review of the scientific evidence on the impacts of light on circadian rhythm is needed for developing an evaluation method of light pollution, i.e., the negative impacts of artificial light, in life cycle assessment (LCA). The current LCA practice does not have a method to evaluate the light pollution, neither in terms of human health nor the ecological impacts. The systematic literature survey was conducted by searching for two concepts: light and circadian rhythm. The circadian rhythm was searched with additional terms of melatonin and rapid-eye-movement (REM) sleep. The literature search resulted to 128 articles which were subjected to a data collection and analysis. Melatonin secretion was studied in 122 articles and REM sleep in 13 articles. The reports on melatonin secretion were divided into studies with specific light exposure (101 reports), usually in a controlled laboratory environment, and studies of prevailing light conditions typical at home or work environments (21 studies). Studies were generally conducted on adults in their twenties or thirties, but only very few studies experimented on children and elderly adults. Surprisingly many studies were conducted with a small sample size: 39 out of 128 studies were conducted with 10 or less subjects. The quality criteria of studies for more profound synthesis were a minimum sample size of 20 subjects and providing details of the light exposure (spectrum or wavelength; illuminance, irradiance or photon density). This resulted to 13 qualified studies on melatonin and 2 studies on REM sleep. Further analysis of these 15 reports indicated that a two-hour exposure to blue light (460 nm) in the evening suppresses melatonin, the maximum melatonin-suppressing effect being achieved at the shortest wavelengths (424 nm, violet). The melatonin concentration recovered rather rapidly, within 15 min from cessation of the exposure, suggesting a short-term or simultaneous impact of light exposure on the melatonin secretion. Melatonin secretion and suppression were reduced with age, but the light-induced circadian phase advance was not impaired with age. Light exposure in the evening, at night and in the morning affected the circadian phase of melatonin levels. In addition, even the longest wavelengths (631 nm, red) and intermittent light exposures induced circadian resetting responses, and exposure to low light levels (5–10 lux) at night when sleeping with eyes closed induced a circadian response. The review enables further development of an evaluation method of light pollution in LCA regarding the light-induced impacts on human circadian system.  相似文献   

12.
目的:探讨慢性不可预见性应激状态下大鼠外周神经内分泌因子昼夜节律的表达特点。方法:成年雄性SD大鼠60只,随机分为模型组和对照组(n=30),采用束缚、摇晃、鼠笼倾斜、湿垫料、冷刺激、拥挤(整夜)、断食或断水、夹尾、昼/夜颠倒等慢性不可预知性温和刺激结合孤养方式,每天暴露于2种应激原中饲养21 d,建立抑郁症模型。测定应激前后大鼠糖水偏爱、旷场行为及高架十字迷宫行为学变化。连续24 h分6个时间点(ZT1、ZT5、ZT9、ZT13、ZT17、ZT21)处死动物取血,每个时间点处死5只大鼠。放免法测定6个时间点血清促肾上腺皮质激素(ACTH)含量,ELISA法测定6个相同时间点血浆皮质酮(CORT)、褪黑素(MT)、血管活性肠肽(VIP)含量,采用单一余弦法比较2组大鼠上述各指标的节律周期、振幅、峰值相位、中值的变化特点。结果:与对照组相比,模型大鼠体重增加值明显降低(P<0.01),各项行为学评分均显著减少(P<0.01)。慢性应激至抑郁样行为充分表达后,血浆ACTH、CORT的相位完全相反,时相大幅度提前,含量波动幅度减小,昼夜分泌节律紊乱;MT的24 h分泌节律完全丧失且整体水平下降,表达量显著降低;VIP虽仍存在24 h节律,但振幅明显降低,峰相位也延迟6 h,且表达量显著提高。结论:慢性应激抑郁状态可导致大鼠外周神经内分泌激素的近日节律非同步于SCN,表现为昼夜节律性和激素分泌量的异常。  相似文献   

13.
14.
Chen WY  Liu SY 《生理科学进展》1998,29(2):161-164
自从发现视交叉上核(SCN)中有直接的视网膜下丘脑投射纤维以来,SCN的内源性节律及其调节机制受到广泛重视,已成为令人感兴趣的新课题。哺乳动物的24h昼夜节律而言,SCN是主要的启步者,但SCN内源性的振荡节律又受到环境光暗周期、谷氨酸和一氧化氮的拖拽。  相似文献   

15.
Abstract

The circadian chloroplast migration in Acetabularia mediterranea was monitored by continuously measuring the transmission of the cells near the apex. Under continuous red light the amplitude of the rhythm decreased rapidly within a few days. However, circadian changes of chloroplast density were still detectable even after 28 days of red light, indicating the persistence of the rhythm. When blue light was added after red light preirradiation of several days phase shifts were observed which were expressed as advances as well as delays. The period of the rhythm proved to be strongly dependent on the intensity of the continuous blue light which was given in addition to red light. Different red light intensities did not change the period. The occurrence of both effects indicates that the sensory transduction of blue light photoreception in Acetabularia works in two different ways: quanta counting processes and processes of light intensity measurement.  相似文献   

16.
The effects of food on biological rhythms may influence the findings of chronopharmacological studies. The present study evaluated the influence of a restricted food access during the rest (light) span of nocturnally active Wistar rats on the 24 h time organization of biological functions in terms of the circadian rhythms of temperature (T), heart rate (HR), and locomotor activity (LA) in preparation for subsequent studies aimed at evaluating the influence of timed food access on the pharmacokinetics and pharmacodynamics of medications. Ten-wk-old male Wistar rats were housed under controlled 12:12 h light:dark (LD) environmental conditions. Food and water were available ad libitum, excepted during a 3 wk period of restriction. Radiotelemetry transmitters were implanted to record daily rhythms in T, HR, and LA. The study lasted 7 wk and began after a 21-d recovery span following surgery. Control baseline data were collected during the first wk (W1). The second span of 3 wk duration (W2 to W4) consisted of the restricted feeding regimen (only 3 h access to food between 11:00 and 14:00 h daily) during the L (rest span) under 12:12 h LD conditions. The third period of 3 wk duration (W5 to W7) consisted of the recovery span with ad libitium normal feeding. Weight loss in the amount of 5% of baseline was observed during W1 with stabilization of body weight thereafter during the remaining 2 wk of food restriction. The 3 h restricted food access during the L rest span induced a partial loss of circadian rhythmicity and the emergence of 12 h rhythms in T, HR, and LA. Return to ad libitum feeding conditions restored circadian rhythmicity in the manner evidenced during the baseline control span. Moreover, the MESORS and amplitudes of the T, HR, and LA 24 h patterns were significantly attenuated during food restriction (p < 0.001) and then returned to initial values during recovery. These changes may be interpreted as a masking effect, since T, HR, and LA are known to directly react to food intake. The consequences of such findings on the methods used to conduct chronokinetic studies, such as the fasting of animals the day before testing, are important since they may alter the temporal structure of the organism receiving the drug and thereby compromise findings.  相似文献   

17.
Summary Djungarian hamsters (Phodopus sungorus), were exposed to constant light with increasing intensities (20, 60, 350 lux), and wheel running activity was recorded. With increasing light intensity the percentage of hamsters showing a split in their daily activity pattern increased and the free running period was lengthened for both the unsplit and the split state. The fact that the free running period of both states depended on the light intensity together with the observation that the highest incidence of acircadian activity occurred under 350 lux, provoked the idea that the emergence of splitting or acircadian rhythmicity is a direct consequence of the light induced lengthening of the free running period. However, analysis of the data failed to support the idea that emergence of a split or acircadian activity is a threshold phenomenon with respect to the free running period.Due to differences in circadian function some Djungarian hamsters do not exhibit photoinduction following short day exposure. In these individuals splitting also occurred but required exposure to a higher light intensity than in photo-responsive hamsters. This observation is in accordance with the idea that the two phenotypes differ in the interaction of the two component oscillators underlying circadian rhythmicity.Abbreviations LD long day photoperiod - LL constant light - SD short day photoperiod - free running period  相似文献   

18.
Effects of thermal environment on sleep and circadian rhythm   总被引:1,自引:0,他引:1  
ABSTRACT: The thermal environment is one of the most important factors that can affect human sleep. The stereotypical effects of heat or cold exposure are increased wakefulness and decreased rapid eye movement sleep and slow wave sleep. These effects of the thermal environment on sleep stages are strongly linked to thermoregulation, which affects the mechanism regulating sleep. The effects on sleep stages also differ depending on the use of bedding and/or clothing. In semi-nude subjects, sleep stages are more affected by cold exposure than heat exposure. In real-life situations where bedding and clothing are used, heat exposure increases wakefulness and decreases slow wave sleep and rapid eye movement sleep. Humid heat exposure further increases thermal load during sleep and affects sleep stages and thermoregulation. On the other hand, cold exposure does not affect sleep stages, though the use of beddings and clothing during sleep is critical in supporting thermoregulation and sleep in cold exposure. However, cold exposure affects cardiac autonomic response during sleep without affecting sleep stages and subjective sensations. These results indicate that the impact of cold exposure may be greater than that of heat exposure in real-life situations; thus, further studies are warranted that consider the effect of cold exposure on sleep and other physiological parameters.  相似文献   

19.
20.
The effects of light on a circadian rhythm of conidiation in neurospora   总被引:36,自引:20,他引:16       下载免费PDF全文
Sargent ML  Briggs WR 《Plant physiology》1967,42(11):1504-1510
The expression of a circadian rhythm of conidiation by timex, a strain of Neurospora crassa, is inhibited by growth in continuous white light. The action spectrum for this effect has a strong peak (with minor subpeaks) in the blue region of the visible spectrum, and a broad shoulder in the near ultraviolet. This action spectrum suggests that a carotenoid or flavin compound may be the photoreceptor, but does not allow one to determine conclusively whether the receptor is indeed a carotenoid, flavin, or some other unrelated pigment. Two lines of evidence suggest that a carotenoid is not the photoreceptor. First, the in vivo absorption spectrum of timex (representing the sum of the spectra of the individual pigments present, predominantly carotenoids) has peaks at wavelengths 10 to 20 mμ longer than those of the action spectrum peaks. Second, an albino-timex has normal photosensitivity, a situation requiring that the photoreceptor, if carotenoid, be a quantitatively minor constituent of the total carotenoid complement.

The magnitude and direction of phase-shift resulting from a standard dose of white light given at different times in the daily cycle of timex varies in the manner reported for other organisms. Additional phase-shift experiments have shown that there are no major transients in the attainment of a new equilibrium after a phase-shifting perturbation, and that 2 light reactions (rapidly and slowly saturating) may be involved in the phase-shift response.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号