首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pertussis toxin-catalyzed ADP-ribosylation of the guanine nucleotide-binding proteins Gi and Go is shown to proceed in Mg2+-digitonin extracts from rat brain; the Mr 41,000 and Mr 39,000 peptides are labelled there as in the membranes. The ADP-ribosylation in detergent solution retains the differential sensitivity to guanine nucleotide analogues. This reaction also removes the partial inhibition by the guanine nucleotides of the binding of opioid agonists, as does the same treatment in the membranes. The partial inhibition of agonist binding by Na+, however, is left unchanged. The binding of the antagonist naloxone is little affected by Na+ or by guanine nucleotides in the treated membranes, but the treated soluble receptors show an enhanced binding in high-Na+ medium, although still guanine nucleotide insensitive. The data suggest that the toxin reaction in the absence of guanine nucleotides and agonist stabilizes the opioid receptor in a receptor-G-protein coupled state which is no longer sensitive to guanine nucleotides but retains its sensitivity to the Na+ ions.  相似文献   

2.
Opioid receptors solubilized in Mg2+-digitonin (2%, wt/vol) from Mg2+-pretreated rat brain membranes maintain, in addition to high-affinity opioid agonist binding, the modulation by guanine nucleotides. One of the modes of expression of the latter property is an attenuation of agonist binding by guanine nucleotides in the presence of Na+. To investigate the molecular basis of this modulation and to identify the G protein(s) involved, the soluble receptors were [32P]ADP-ribosylated by means of Bordetella pertussis toxin and subjected to molecular size exclusion chromatography. In addition, soluble extracts were chromatographed on lectin and hydrophobic affinity columns. The binding of 35S- and 3H-labelled analogues of GTP was also monitored in the species separated. The oligomeric G protein-coupled opioid receptors and the guanine nucleotide/pertussis toxin-sensitive species showed similar chromatographic properties in all three systems. This indicates that the biochemically functional G protein-opioid receptor complex formed in Mg2+-pretreated membranes in the absence of an agonist is stable in digitonin solution and to chromatographic separation. Further analysis showed that the guanine nucleotide modulation of opioid receptors is via the pertussis toxin substrates with Mr of 41,000 and 39,000, which are identified as Gi and Go alpha subunits, respectively.  相似文献   

3.
Dopamine receptors, solubilized from bovine anterior pituitary membranes with the detergent digitonin, retained a typical dopaminergic specificity for the binding of both agonists and antagonists. The affinities of antagonists for binding to the soluble receptors are virtually identical with those observed with the membrane-bound receptors. The affinities of agonists however, correspond to those for the form of the receptors in the membranes having low affinity for those agonists (De Lean, A., Kilpatrick, B. F., and Caron, M. G. (1982) Mol. Pharmacol. 22, 290-297). Thus, after solubilization, agonist high affinity interactions with the receptor and their sensitivity to modulation by guanine nucleotides are lost. However, high affinity agonist binding and its sensitivity to guanine nucleotides can be preserved if the membrane-bound receptors are prelabeled with the agonist [3H]n-propylapomorphine prior to solubilization. In order to investigate the molecular basis for these changes in the properties of agonist binding, the solubilized receptors were characterized by chromatographic procedures. Using molecular exclusion high pressure liquid chromatography, [3H]n-propylapomorphine-prelabeled receptors elute as an apparent larger molecular species than either unlabeled or antagonist [( 3H]spiroperidol)-pre-labeled receptors. Moreover, incubation of the pooled agonist-prelabeled receptor peak with guanine nucleotides effects a decrease in the apparent size of the receptors such that upon rechromatography they elute in a position coincidental with the 3H-antagonist-pre-labeled receptor peak. Thus, occupancy of the receptors by agonists promotes the formation of a guanine nucleotide-sensitive agonist high affinity form of the receptor which is of larger apparent size presumably due to the association of the receptor with a guanine nucleotide regulatory protein.  相似文献   

4.
The effects of guanine nucleotides on binding of 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX), a highly selective A1 adenosine receptor antagonist, have been investigated in rat brain membranes and solubilized A1 receptors. GTP, which induces uncoupling of receptors from guanine nucleotide binding proteins, increased binding of [3H]DPCPX in a concentration-dependent manner. The rank order of potency for different guanine nucleotides for increasing [3H]DPCPX binding was the same as for guanine nucleotide-induced inhibition of agonist binding. Therefore, a role for a guanine nucleotide binding protein, e.g., Gi, in the regulation of antagonist binding is suggested. This was confirmed by inactivation of Gi by N-ethylmaleimide (NEM) treatment of membranes, which resulted in an increase in [3H]DPCPX binding similar to that seen with addition of GTP. Kinetic and equilibrium binding studies showed that the GTP- or NEM-induced increase in antagonist binding was not caused by an affinity change of A1 receptors for [3H]DPCPX but by an increased Bmax value. Guanine nucleotides had similar effects on membrane-bound and solubilized receptors, with the effects in the solubilized system being more pronounced. In the absence of GTP, when most receptors are in a high-affinity state for agonists, only a few receptors are labeled by [3H]DPCPX. It is suggested that [3H]DPCPX binding is inhibited when receptors are coupled to Gi. Therefore, uncoupling of A1 receptors from Gi by guanine nucleotides or by inactivation of Gi with NEM results in an increased antagonist binding.  相似文献   

5.
A1 adenosine receptors from rat brain membranes were solubilized with the zwitterionic detergent 3-[3-(cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized receptors retained all the characteristics of membrane-bound A1 adenosine receptors. A high and a low agonist affinity state for the radiolabelled agonist (R)-N6-[3H]phenylisopropyladenosine([3H]PIA) with KD values of 0.3 and 12 nM, respectively, were detected. High-affinity agonist binding was regulated by guanine nucleotides. In addition agonist binding was still modulated by divalent cations. The solubilized A1 adenosine receptors could be labelled not only with the agonist [3H]PIA but also with the antagonist 1,3-diethyl-8-[3H]phenylxanthine. Guanine nucleotides did not affect antagonist binding as reported for membrane-bound receptors. These results suggest that the solubilized receptors are still coupled to the guanine nucleotide binding protein Ni and that all regulatory functions are retained on solubilization.  相似文献   

6.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   

7.
Adenosine acting through membrane-bound A1 receptors is capable of inhibiting the enzyme adenylate cyclase. A1 adenosine receptors from rat cerebral cortex have been solubilized in high yield and in an active form with the detergent digitonin. The solubilized receptors bind the agonist radioligand (-)-N6-3-[125I] iodo-4-hydroxyphenylisopropyl)adenosine (HPIA) with the same high affinity, demonstrate the same agonist and antagonist potency series and stereo-specificity as the membrane-bound A1 receptor. In addition to maintaining high affinity agonist binding, soluble A1 receptors' affinity for agonists is still modulated by guanine nucleotides. This result contrasts with other adenylate cyclase coupled receptors (beta 2, alpha 2, D2) wherein high affinity agonist binding is lost subsequent to solubilization. To investigate the molecular basis for this difference, solubilized A1 receptors which were labeled with [125I]HPIA either prior to or subsequent to solubilization, were compared by sucrose density gradient centrifugation. Both labeled species demonstrated exactly the same sedimentation properties and display guanine nucleotide sensitivity. This suggests that the same guanine nucleotide-sensitive receptor complex formed in membranes in stable to solubilization and can form a high affinity agonist complex in soluble preparation. The molecular mechanism responsible for the stable receptor complex in this system compared to the beta 2, alpha 2, and D2 systems remains to be determined.  相似文献   

8.
Solubilization and Characterization of Rat Brain α2-Adrenergic Receptor   总被引:5,自引:4,他引:1  
alpha 2-Adrenergic receptors labelled by [3H]-clonidine (alpha 2-agonist) can be solubilized from the rat brain in a form sensitive to guanine nucleotides with a zwitterionic detergent, 3-[3-(cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS). About 40% of the original [3H]CLO binding sites in the membranes were solubilized with 6 mM CHAPS. Separation of the soluble [3H]CLO-bound complex was performed by the vacuum filtration method using polyethylenimine-treated GF/B filters. Solubilized [3H]CLO binding sites retained the same pharmacological characteristics of membrane-bound alpha 2-adrenergic receptors. Scatchard plots of [3H]CLO binding to solubilized alpha 2-receptors were curvilinear, indicating the existence of the two distinct binding components. Solubilized receptors were eluted as a single peak from Bio-Gel A-1.5 m column with a Stokes radius of 6.6 nm. The isoelectric point was 5.6-5.8. Regulations of the receptor binding by guanine nucleotides, monovalent cations, and sulfhydryl-reactive agents were maintained intact in the soluble state, whereas those by divalent cations were lost. The apparent retention of receptors and guanine nucleotide binding regulatory component(s) in the soluble state may allow a investigation of the regulation mechanisms of the brain alpha 2-adrenergic receptor system at the molecular level.  相似文献   

9.
Vasopressin (V2) receptors were solubilized from porcine kidney membranes with the detergent egg lysolecithin. Binding of [3H]vasopressin to the solubilized fraction was rapid, specific, and saturable. The agonist dissociation constants observed in membranes and solubilized fractions were 1.7 +/- 0.3 and 2.3 +/- 0.2 nM, respectively. In competition binding experiments, the solubilized fraction exhibited the same pharmacological profile as the membranes. Chemical crosslinking of [125I]vasopressin to the solubilized fraction followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated a 62-kDa band which was specifically labeled with [125I]vasopressin. Vasopressin binding sites from the solubilized fractions were resolved by gel filtration and ultracentrifugation on a sucrose gradient. In addition, agonist high affinity binding to V2 receptors and its sensitivity to guanine nucleotides were preserved even after solubilization in the absence of prebound agonist prior to solubilization. Addition of guanine nucleotides such as GTP gamma S decreased the specific binding of [3H]arginine vasopressin to these solubilized fractions in a dose-dependent manner, suggesting the solubilization of a V2 receptor-G protein complex. [32P]ADP ribosylation of the solubilized fraction by cholera and pertussis toxins revealed specifically labeled proteins with molecular weights of 42,000-43,000 and 39,000-41,000, respectively, on sodium dodecyl sulfate polyacrylamide gels. Furthermore [35S]GTP gamma S binding to these solubilized fractions was enhanced by vasopressin, confirming that a significant proportion of the vasopressin receptors must be closely coupled to G proteins even when these receptors are solubilized in the absence of agonist. These results are in contrast with those reported for beta, alpha 2 adrenergic and D2 dopaminergic receptor systems, but in agreement with D1 dopaminergic and A1 adenosine receptors. The molecular mechanism responsible for this difference remains to be determined.  相似文献   

10.
To evaluate the relation between the pancreatic cholecystokinin (CCK) receptor and guanine nucleotide-binding protein(s) we studied the effects of nucleotides on 125I-CCK binding to pancreatic acinar plasma membranes, 125I-CCK binding to solubilized 125I-CCK receptors, and the stability of the solubilized 125I-CCK-receptor complex. In plasma membranes, guanine nucleotides both inhibited CCK binding and increased the dissociation of CCK from its receptor. The potency of the nucleotides studied was GTP gamma S = GMP-PNP greater than GTP much greater than ATP. When membranes were solubilized with digitonin, subsequent binding of CCK was insensitive to guanine nucleotides including GTP, GMP-PNP and GTP gamma S. However, if CCK binding occurred before solubilization of the membranes, guanine nucleotides increased dissociation at concentrations and with a specificity similar to that observed for effects on intact pancreatic membranes. It is concluded that guanine nucleotides act via a protein which is separable from the receptor to induce dissociation of bound CCK. Moreover, CCK binding induces an association in the plasma membrane of the CCK receptor with this guanine nucleotide binding protein.  相似文献   

11.
The effects of guanine nucleotides, NaCl, and solubilization on the interaction of antagonists and agonists with the A1 adenosine receptor of bovine brain membranes were studied using the high-affinity antagonist radioligand [3H]xanthine amine congener ([3H]XAC). In membranes, guanine nucleotides and NaCl had no effect on [3H]XAC saturation curves. Using agonist (R)-phenylisopropyladenosine (R-PIA) competition curves versus [3H]XAC, it was demonstrated that agonists could differentiate two affinity states having high and low affinity for agonist and that guanine nucleotides shifted the equilibrium to an all-low-affinity state that was indistinguishable from the low-affinity state in the absence of guanine nucleotides. In contrast, NaCl decreased agonist affinity by a distinctly different mechanism characterized by a parallel rightward shifted agonist curve such that R-PIA still recognized two affinity states albeit of lower affinity than in the absence of salt. R-PIA competition curves in the presence of both guanine nucleotides and salt were still shallow but were shifted far to the right, and two very low affinity states were discerned. On solubilization, guanine nucleotides in a reversible, concentration-dependent manner increased antagonist ([3H]XAC) but not agonist (R-N6-[3H]phenylisopropyladenosine) binding. This was consequent to a change in maximal binding capacity. R-PIA competition curves (versus [3H]XAC) in solubilized preparations demonstrated that agonist could still differentiate two agonist specific affinity states which were modulated by guanine nucleotides. In the presence of guanine nucleotides all the receptors were shifted to a uniform low-affinity state. In contrast, NaCl had no effect on agonist affinity as determined by agonist competition curves in a solubilized receptor preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The binding sites for opiates (agonist and antagonist) and opioid peptides can be solubilized from rat brain membranes with digitonin in the presence of Mg2+ (10 mM). High affinity and high capacity binding to the soluble delta, mu, and kappa receptors is obtainable when the membranes are treated in Mg2+ (30 degrees C, 60 min) prior to solubilization. The yields of solubilized binding sites extracted with digitonin, 40-90%, are higher than those obtained from Mg2+-pretreated membranes with other detergents commonly used for receptor solubilization. The stability of the digitonin-soluble opioid receptor at room temperature makes it useful for purification and characterization.  相似文献   

13.
Pretreatment of striatal membranes with N-ethylmaleimide in the presence of a D1-specific agonist inactivated endogenous guanine nucleotide binding proteins (G proteins), but not D1 dopamine receptors, resulting in a loss of high-affinity agonist binding sites. Such D1 receptors were solubilized, mixed with exogenous G proteins from cells not containing D1 receptors, and reconstituted into phospholipid vesicles. These reconstituted receptors were able to couple to the exogenous G proteins, and the proportion of agonist high-affinity sites of the receptor (40-57%) was similar to levels obtained with naive receptors coupling to endogenous G proteins (40%) upon solubilization and reconstitution. These hybrid high-affinity sites were fully modulated by guanine nucleotides. Pretreatment of cells with pertussis toxin prior to extraction of G proteins resulted in a 50% decrease in the proportion of high-affinity sites; these sites remained sensitive to guanine nucleotides. When D1 receptors were reconstituted with extracts of cyc- cells, which lack stimulatory G proteins, the proportion of high-affinity sites was reduced to 31% of the total. Pertussis toxin treatment of the cyc- cells completely abolished the formation of high-affinity sites. These results demonstrate that D1-dopaminergic receptors are able to couple to not only stimulatory G proteins (Gs), but also to inhibitory G proteins (Gi).  相似文献   

14.
Adenosine Ri receptors and inhibitory guanine-nucleotide-regulatory components were solubilized from rat cerebral-cortical membranes with sodium cholate. (-)-N6-Phenylisopropyl[2,8-3H]adenosine [( 3H]PIA) binds with high affinity to the soluble receptors, which retain the pharmacological specificity of adenosine Ri receptors observed in membranes. The binding is regulated by bivalent cations and guanine nucleotides. Bivalent cations increase [3H]PIA binding by increasing both the affinity and the apparent number of receptors. Guanine nucleotides decrease agonist binding by increasing the dissociation of the ligand-receptor complex. Adenosine agonists stabilize the high-affinity form of the soluble receptor. The hydrodynamic properties of the adenosine receptor were determined with cholate extracts of membranes that were treated with [3H]PIA. Sucrose-gradient-centrifugation analysis indicates that the receptor has a sedimentation coefficient of 7.7 S. The receptor is eluted from Sepharose 6B columns with an apparent Stokes radius of 7.2 nm. Labelling of either sucrose-gradient or gel-filtration-column fractions with pertussis toxin and [32P]-NAD+ reveals that both the 41,000- and 39,000-Mr substrates overlap with the receptor activity. These studies suggest that the high-affinity adenosine-receptor-binding activity in the cholate extract represents a stable R1-N complex.  相似文献   

15.
Abstract: Sodium is generally required for optimal inhibition of adenylyl cyclase by Gl/o-coupled receptors. Canna-binoids bind to specific receptors that act like other members of the Gl/o-coupled receptor superfamily to inhibit adenylyl cyclase. However, assay of cannabinoid inhibition of adenylyl cyclase in rat cerebellar membranes revealed that concentrations of NaCI ranging from 0 to 150 mM had no effect on agonist inhibition. This lack of effect of sodium was not unique to cannabinoid receptors, because the same results were observed using baclofen as an agonist for GABAB receptors in cerebellar membranes. The lack of sodium dependence was region-specific, because assay of cannabinoid and opioid inhibition of adenylyl cyclase in striatum revealed an expected sodium dependence, with 50 mM NaCI providing maximal inhibition levels by both sets of agonists. This difference in sodium requirements between these two regions was maintained at the G protein level, because agonist-stimulated low Km GTPase activity was maximal at 50 mM NaCI in striatal membranes, but was maximal in the absence of NaCI in cerebellar membranes. Assay of [3H]WIN 55212–2 binding in cerebellar membranes revealed that the binding of this labeled agonist was sensitive to sodium and guanine nucleotides like other Gl/o-coupled receptors, because both NaCI and the nonhydrolyzable GTP analogue Gpp(NH)p significantly inhibited binding. These results suggest that differences in receptor-G protein coupling exist for cannabinoid receptors between these two brain regions.  相似文献   

16.
Opioid receptor-coupled second messenger systems   总被引:19,自引:0,他引:19  
S R Childers 《Life sciences》1991,48(21):1991-2003
Although pharmacological data provide strong evidence for different types of opioid receptors (e.g., mu, delta, and kappa), they share many common properties in their ability to couple to second messenger systems. All opioid receptor types are coupled to G-proteins, since agonist binding is diminished by guanine nucleotides and agonist-stimulated GTPase activity has been identified in several preparations. Moreover, all three types inhibit adenylyl cyclase. This second messenger system has been identified for opioid receptors in both isolated brain membranes and in transformed cell culture. Studies with chronic treatment with opioid agonists suggest that the coupling of receptors with G-proteins and second messenger effectors may play important roles in development of opioid tolerance.  相似文献   

17.
The beta 1-adrenergic receptors of turkey erythrocyte membranes have been identified by binding of the radioactively labeled antagonist (--)-[3H]dihydroalprenolol, solubilized by treatment of the membranes with the detergent digitonin, and purified by affinity chromatography. Binding of (--)-[3H]dihydroalprenolol to the membranes occurred to a single class of non-cooperative binding sites (0.2--0.3 pmol/mg protein) with a equilibrium dissociation constant (Kd) of 8 (+/- 2) nM. These sites were identified as the functional, adenylate-cyclase-linked beta 1-adrenergic receptors on the basis of: firstly, the fast association and dissociation binding kinetics at 30 degrees C; secondly, the stereospecific displacement of bound (--)-[3H]dihydroalprenolol by beta-adrenergic agonists and antagonists; and thirdly, the order of potencies for agonists to displace bound tracer (isoproterenol congruent to protokylol greater than norepinephrine congruent to epinephrine) similar to the one found for adenylate cyclase activation, and typical for beta 1-adrenergic receptors. Treatment of the membranes with the detergent digitonin solubilized 30% of the receptors in an active form. Digitonin solubilized also adenylate cyclase activity with a yield of 20 to 30%, provided the membranes were first treated with an effector known to produce a persistent active state of the enzyme: e.g. sodium fluoride. Binding sites for guanine nucleotides ([3H]p[NH]ppG) were solubilized as well. Their concentration (24 pmol/mg protein) was in large excess over the concentration of solubilized receptors (0.30--0.45 pmol/mg protein). Solubilized receptors were purified 500--2000-fold by affinity chromatography with a 25 to 35% yield, using an alprenolol-agarose affinity matrix. Affinity purified receptors were devoid of measurable adenylate cyclase activity and guanine nucleotide binding sites, thus showing that receptors and adenylate cyclase are distinct membrane constituents, and that guanine nucleotides apparently do not bind directly to the receptor molecules. Membrane-bound, solubilized and purified receptors were sensitive to inactivation by dithiothreitol, but not by N-ethylmaleimide, suggesting that receptors are at least partly constituted of protein molecules, with essential disulfide bonds.  相似文献   

18.
Pretreatment of intact NG108-15 cells with pertussis toxin suppresses opioid inhibition of cyclic AMP accumulation mediated by the inhibitory guanine nucleotide-binding regulatory protein, Ni, which apparently also mediates the inhibitory nucleotide effects on opioid against binding. The toxin treatment had no effect on opioid agonist binding measured in NG108-15 cell membranes without sodium present. However, the toxin potentiated the inhibitory effect of sodium on agonist binding, leading to an agonist-specific reduction of opioid receptor affinity in the presence of sodium in the binding reaction. The potency of the stable GTP analog, GTP gamma S, to reduce agonist binding in the presence of sodium was little changed in membranes prepared from pertussis toxin-treated cells compared to control membranes, whereas the potency of the stable GDP analog, GDP beta S, was magnified. The data indicate that ADP-ribosylation of Ni by pertussis toxin potentiates sodium regulation of opioid agonist binding and that the communication between Ni and opioid receptors is not lost by the covalent modification of Ni.  相似文献   

19.
T Kline  H Park  L R Meyerson 《Life sciences》1989,45(21):1997-2005
The binding of [3H] 8-OH-DPAT to membrane-bound 5-HT1A receptors from bovine hippocampus was saturable and corresponded to a single high-affinity state. Solubilization of the bovine hippocampal membranes with 10 mM CHAPS containing 200 mM NaCl, renders a preparation which binds [3H] 8-OH-DPAT with high-affinity (Kd = 1.9 nM) and is guanine nucleotide sensitive and ketanserin insensitive. 50% of [3H] 8-OH-DPAT binding activity is solubilized. The presence of GMP-P(NH)P promotes a low-affinity (Kd = 9.6 nM) state which is characteristic of receptors coupled to G-proteins. GMP-P(NH)P markedly accelerates the dissociation [3H] 8-OH-DPAT from solubilized membranes while having negligible effects on association. Thus, the agonist can activate the terniary complex rather than to promote its formation. 8-OH DPAT, WB 4101 and 5-carboxamidotryptamine dose responsively inhibit soluble [3H] 8-OH-DPAT binding with IC(50) values of 16.1, 15.6 and 1.3 nM, respectively. The CHAPS solubilized membrane preparation retains many of the [3H] 8-OH-DPAT binding characteristics of the membrane bound form.  相似文献   

20.
Abstract

Binding of [3H]CGS 21680, an agonist radioligand selective for A2-adenosine receptors (A2AR), to membranes and solubilized preparations from bovine brain striatum revealed labelling of a single high affinity binding state. In membranes, guanine nucleotides per se were ineffective in modulating agonist binding whereas cations, Na+ and Mg++, had distinct effects. The addition of NaCl (200 mM) as well as the Mg++-free preparation of membranes led to a significant decrease in binding affinity and the number of binding sites. Moreover, the presence of Na+ was required for the demonstration of a guanine nucleotide effect, i.e. a decrease in maximal binding. Following solubilization, agonist-A AR interactions were sensitive to guanine nucleotides even in the absence of Na+2; guanine nucleotides and Na+ had additive effects in reducing the number of binding sites. Moreover, the effect of GTP was reversible, i.e. binding returned to control levels upon removal of the nucleotide. This suggests the A2AR and its G protein (presumably GS) are solubilized as a functional unit and may not dissociate even in the presence of GTP following solubilization. We, therefore, believe that a “tight” association exists between receptor and G protein (GS), and that guanine nucleotides and sodium act at different sites on the R–G complex. Drawing an analogy with similar observations on the avian β-adrenergic receptor (Hertel et al, J.Biol.Chem. 265:17988–94, 1990; Parker & Ross, J.Biol.Chem. 266:9987–96, 1991) we postulate that the regulatory features of the A2AR can be attributed to a distinct receptor domain that interacts with cellular regulatory elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号