共查询到20条相似文献,搜索用时 24 毫秒
1.
Thomas DD Ridnour LA Isenberg JS Flores-Santana W Switzer CH Donzelli S Hussain P Vecoli C Paolocci N Ambs S Colton CA Harris CC Roberts DD Wink DA 《Free radical biology & medicine》2008,45(1):18-31
Nitric oxide (NO) has earned the reputation of being a signaling mediator with many diverse and often opposing biological activities. The diversity in response to this simple diatomic molecule comes from the enormous variety of chemical reactions and biological properties associated with it. In the past few years, the importance of steady-state NO concentrations has emerged as a key determinant of its biological function. Precise cellular responses are differentially regulated by specific NO concentration. We propose five basic distinct concentration levels of NO activity: cGMP-mediated processes ([NO]<1-30 nM), Akt phosphorylation ([NO] = 30-100 nM), stabilization of HIF-1alpha ([NO] = 100-300 nM), phosphorylation of p53 ([NO]>400 nM), and nitrosative stress (1 microM). In general, lower NO concentrations promote cell survival and proliferation, whereas higher levels favor cell cycle arrest, apoptosis, and senescence. Free radical interactions will also influence NO signaling. One of the consequences of reactive oxygen species generation is to reduce NO concentrations. This antagonizes the signaling of nitric oxide and in some cases results in converting a cell-cycle arrest profile to a cell survival profile. The resulting reactive nitrogen species that are generated from these reactions can also have biological effects and increase oxidative and nitrosative stress responses. A number of factors determine the formation of NO and its concentration, such as diffusion, consumption, and substrate availability, which are referred to as kinetic determinants for molecular target interactions. These are the chemical and biochemical parameters that shape cellular responses to NO. Herein we discuss signal transduction and the chemical biology of NO in terms of the direct and indirect reactions. 相似文献
2.
3.
It is unclear what mechanisms lead to the degeneration of basal forebrain cholinergic neurons in Alzheimer's or other human brain diseases. Some brain cholinergic neurons express neuronal nitric oxide (NO) synthase (nNOS), which produces a free radical that has been implicated in some forms of neurodegeneration. We investigated nNOS expression and NO toxicity in SN56 cells, a clonal cholinergic model derived from the medial septum of the mouse basal forebrain. We show here that, in addition to expressing choline acetyltransferase (ChAT), SN56 cells express nNOS. Treatment of SN56 cells with retinoic acid (RA; 1 microM) for 48 h increased ChAT mRNA (+126%), protein (+88%), and activity (+215%) and increased nNOS mRNA (+98%), protein (+400%), and activity (+15%). After RA treatment, SN56 cells became vulnerable to NO excess generated with S-nitro-N-acetyl-DL-penicillamine (SNAP) and exhibited increased nuclear DNA fragmentation that was blocked with a caspase-3 inhibitor. Treatment with dexamethasone, which largely blocked the RA-mediated increase in nNOS expression, or inhibition of nNOS activity with methylthiocitrulline strongly potentiated the apoptotic response to SNAP in RA-treated SN56 cells. Caspase-3 activity was reduced when SNAP was incubated with cells or cell lysates, suggesting that NO can directly inhibit the protease. Thus, whereas RA treatment converts SN56 cells to a proapoptotic state sensitive to NO excess, endogenously produced NO appears to be anti-apoptotic, possibly by tonically inhibiting caspase-3. 相似文献
4.
Impaired plasma nitric oxide availability and extracellular superoxide dismutase activity in healthy humans with advancing age 总被引:3,自引:0,他引:3
Di Massimo C Scarpelli P Di Lorenzo N Caimi G di Orio F Ciancarelli MG 《Life sciences》2006,78(11):1163-1167
This study is aimed to verify the modifications of extracellular superoxide dismutase (EC-SOD) activity and its potential involvement on the mechanism responsible for the impairment of plasma nitric oxide (NO) availability occurring with advancing age in healthy humans. For this purpose, plasma samples were drawn from 40 healthy men, aged 20-92 years, in fasting state and used for measurements of stable end-product nitrite/nitrate (NOx), as expression of NO availability, EC-SOD activity, thiobarbituric acid reactive substances (TBARS) as marker of lipid peroxidation, Trolox equivalent antioxidant capacity (TEAC) as a measure of plasma total antioxidant capacity, and in vitro susceptibility of low density lipoprotein (LDL) to copper-mediated oxidation, evaluated as lag time. As indicated by our results, advancing age was significantly related to decreased plasma values of NOx (r = -0.877, P < 0.001), EC-SOD activity (r = -0.888, P < 0.001), TEAC (r = -0.647, P < 0.001) and lag time (r = -0.621, P < 0.001) as well as to an increased plasma amount of TBARS (r = 0.858, P < 0.001). NOx plasma level resulted independently predicted by EC-SOD activity and age. EC-SOD activity, in turn, was determined by age and TEAC. Taken together, findings of the present study give further insight into the mechanism related to age-associated endothelial dysfunction, indicating that the decreased EC-SOD activity may be involved in the progressive reduction of plasma NO availability with advancing age through the age-related impairment of oxidant/antioxidant balance. 相似文献
5.
Effect of overexpression of Bcl-2 on cellular oxidative damage, nitric oxide production, antioxidant defenses, and the proteasome 总被引:9,自引:0,他引:9
MoonHee Lee Dong-Hoon Hyun Karyn-Ann Marshall Lisa M. Ellerby Dale E. Bredesen Peter Jenner Barry Halliwell 《Free radical biology & medicine》2001,31(12):1550-1559
Bcl-2 is a gene family involved in the suppression of apoptosis in response to a wide range of cellular insults. Multiple papers have suggested a link between Bcl-2 and oxidative damage/antioxidant protection. We therefore examined parameters of antioxidant defense and oxidative damage in two different cell lines, NT-2/D1 (NT-2) and SK-N-MC, overexpressing Bcl-2 as compared with vector-only controls. Bcl-2 transfectants of both cell lines were more resistant to H2O2 and showed increases in GSH level and Cu/Zn-superoxide dismutase (SOD1) activity, but not in Mn-superoxide dismutase, glutathione peroxidase, or glutathione reductase activities. Catalase activity was increased in SK-N-MC cells. Overexpression of Bcl-2 did not significantly decrease levels of oxidative DNA damage (measured as 8-hydroxyguanine) or lipid peroxidation, but it decreased levels of 3-nitrotyrosine in both cell lines and protein carbonyls in SK-N-MC cells only. It also increased proteasome activity in both cell lines. We conclude that Bcl-2 raises cellular antioxidant defense status, but this is not necessarily reflected in decreased levels of oxidative damage to DNA and lipids. The ability of Bcl-2 overexpression to decrease 3-nitrotyrosine levels suggests that it may decrease formation of peroxynitrite or other reactive nitrogen species; this was confirmed as decreased production of NO2−/NO3− in the transfected cells and a fall in the level of nNOS protein. 相似文献
6.
Stable isotopic methods are considered the “gold standard” for the measurement of rates of in vivo NO production. However, values reported for healthy human individuals differ by more than 1 order of magnitude. The reason for the apparent variability in NO production is unclear. The primary aim of this review was to evaluate and compare the rates of in vivo NO production in health and disease using stable isotope methods. Articles were retrieved using the PubMed electronic database. Information on concentrations, isotopic enrichments of fluxes, and conversion rates of molecules involved in the NO metabolic pathway was extracted from selected articles; 35 articles were included in the final analysis. Three protocols were identified, including the arginine-citrulline, the arginine-nitrate, and the oxygen-nitrate protocols. The arginine-citrulline protocol showed a wider variability compared to the arginine-nitrate and oxygen-nitrate protocols. The direction of the association between disease state and rate of NO production was essentially determined by the etiopathogenesis of the disorder (inflammatory, metabolic, vascular). Considerable variation in methodologies used to assess whole-body NO synthesis in humans exists. The precision of several aspects of the techniques and the validity of some assumptions made remain unknown, and there is a paucity of information about physiological rates of NO production from childhood over adolescence to old age. 相似文献
7.
Acteoside and other phenylethanoid glycoside are contained in many plants that are widely used in traditional Chinese herbal medicine. Acteoside possesses multiple biological actions. Its effect on the vascular system is, however, incompletely understood. This study was aimed to investigate the role of endothelial [Ca2+]i, nitric oxide (NO), and cyclic GMP in acteoside-induced inhibition of endothelial NO-mediated relaxation in rat aorta. Acteoside reduced endothelial NO-dependent relaxation induced by acetylcholine (Ach) or A23187. Acteoside inhibited Ach-stimulated increase in tissue content of cyclic GMP in endothelium-intact rings. L-NNA abolished the stimulatory effect of Ach. Treatment with acteoside significantly suppressed bradykinin-induced increase in [Ca2+]i of cultured rat aortic endothelial cells. Acute exposure to acteoside (30 μM) did not affect the expression of eNOS mRNA in endothelium-intact rings. In summary, acteoside impairs endothelial NO-mediated aortic relaxation partially through inhibition of agonist-induced endothelial Ca2+ mobilization and Ca2+-dependent NO production and subsequent suppression of cyclic GMP formation. This novel pharmacological action if occurring in small vessels in vivo, may contribute to the reported anti-inflammatory effect of acteoside against NO-mediated vascular permeability-related acute edema. 相似文献
8.
Nitric oxide (NO) is a highly reactive, membrane-permeable free radical, which has recently emerged as an important signalling
molecule and antioxidant. Here we investigated the protective effect of NO against the toxicity caused by excess CuSO4 (50 μM) in the adventitious roots of mountain ginseng. It was found that NO donor, sodium nitroprusside (SNP), was effective
in reducing Cu-induced toxicity in the mountain ginseng adventitious roots. Protective effect of SNP, as indicated by extent
of lipid peroxidation, was reversed by incorporation of 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide
(CPTIO), a NO scavenger, in the medium suggesting that the protective effect of SNP is attributable to NO released, which
was revealed from in situ confocal laser scanning microscopic localization of NO in the adventitious roots of mountain ginseng.
Results obtained in the present study suggest that reduction of excess Cu-induced toxicity by SNP is most likely mediated
through the modulation in the activities of antioxidant enzymes involved in H2O2 detoxification (catalase, peroxidase, ascorbate peroxidase) and in the maintenance of cellular redox couples (glutathione
reductase), and contents of molecular antioxidants (particularly non-protein thiol, ascorbate and its redox status). Exogenous
NO supply also improved the activity of superoxide dismutase, an enzyme responsible for O2
·− dismutation, and NADPH oxidase, an enzyme responsible for O2
·− generation, in excess Cu supplied adventitious roots of mountain ginseng. 相似文献
9.
Evidence is presented that nitric oxide (NO) may regulate blood pressure in cephalopod molluscs. In vitro tests performed on the cephalic aorta of Sepia officinalis (L.) (Cephalopoda) showed that the NO releasers (glyceroltrinitrate, sodium nitroprusside, 3-morpholinylsydnoneimine chloride
and KNO2) induced concentration-dependent vasodilatation of vessel segments (without the tunica adventitia/periadventitia) precontracted
by dopamine. These vasodilatatory actions could be totally blocked by oxadiazolo[4,3-a] quinoxalin-1-one, an inhibitor of
the NO-sensitive guanylyl cyclase, and partially mimicked by the cyclic guanosine monophosphate (cGMP) analogue 8-bromo cGMP
and by the phosphodiesterase inhibitor, zaprinast. The NO-precursor, l-arginine, showed vasodilatatory effects only on segments of the aorta in which the layers containing nerves (tunica adventitia/periadventitia)
had been left intact, suggesting that NO synthase may be located within peripheral nerves.
Accepted: 11 August 1998 相似文献
10.
Ferric nitrilotriacetate (Fe-NTA), a common water pollutant and a known renal carcinogen, acts through the generation of oxidative stress and hyperproliferative response. In the present study, we show that the nitric oxide (NO) generated by the administration of glyceryl trinitrate (GTN) affords protection against Fe-NTA-induced oxidative stress and proliferative response. Administration of Fe-NTA resulted in a significant (P<0.001) depletion of renal glutathione (GSH) content with concomitant increase in lipid peroxidation and elevated tissue damage marker release in serum. Parallel to these changes, Fe-NTA also caused down-regulation of GSH metabolizing enzymes including glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase and several fold induction in ornithine decarboxylase (ODC) activity and rate of DNA synthesis. Subsequent exogenous administration of GTN at doses of 3 and 6mg/kg body weight resulted in significant (P<0.001) recovery of GSH metabolizing enzymes and amelioration of tissue GSH content, in a dose-dependent manner. GTN administration also inhibited malondialdehyde (MDA) formation, induction of ODC activity, enhanced rate of DNA synthesis, and pathological deterioration in a dose-dependent fashion. Further, administration of NO inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), exacerbated Fe-NTA-induced oxidative tissue injury, hyperproliferative response, and pathological damage. Overall, the study suggests that NO administration subsequent to Fe-NTA affords protection against ROS-mediated damage induced by Fe-NTA. 相似文献
11.
12.
Estevez AY Pritchard S Harper K Aston JW Lynch A Lucky JJ Ludington JS Chatani P Mosenthal WP Leiter JC Andreescu S Erlichman JS 《Free radical biology & medicine》2011,51(6):1155-1163
Cerium oxide nanoparticles (nanoceria) are widely used as catalysts in industrial applications because of their potent free radical-scavenging properties. Given that free radicals play a prominent role in the pathology of many neurological diseases, we explored the use of nanoceria as a potential therapeutic agent for stroke. Using a mouse hippocampal brain slice model of cerebral ischemia, we show here that ceria nanoparticles reduce ischemic cell death by approximately 50%. The neuroprotective effects of nanoceria were due to a modest reduction in reactive oxygen species, in general, and ~ 15% reductions in the concentrations of superoxide (O2•−) and nitric oxide, specifically. Moreover, treatment with nanoceria markedly decreased (~ 70% reduction) the levels of ischemia-induced 3-nitrotyrosine, a modification to tyrosine residues in proteins induced by the peroxynitrite radical. These findings suggest that scavenging of peroxynitrite may be an important mechanism by which cerium oxide nanoparticles mitigate ischemic brain injury. Peroxynitrite plays a pivotal role in the dissemination of oxidative injury in biological tissues. Therefore, nanoceria may be useful as a therapeutic intervention to reduce oxidative and nitrosative damage after a stroke. 相似文献
13.
《Redox report : communications in free radical research》2013,18(6):221-231
AbstractProtein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO?) and nitrogen dioxide (?NO2). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process. Early after the discovery that protein tyrosine nitration can occur under biologically relevant conditions, it was shown that some low molecular weight transition-metal centers and metalloproteins could promote peroxynitrite-dependent nitration. Later studies showed that nitration could be achieved by peroxynitrite-independent routes as well, depending on the transition metal-catalyzed oxidation of nitrite (NO2?) to ?NO2 in the presence of hydrogen peroxide. Processes like these can be achieved either by hemeperoxidase-dependent reactions or by ferrous and cuprous ions through Fenton-type chemistry. Besides the in vitro evidence, there are now several in vivo studies that support the close relationship between transition metal levels and protein tyrosine nitration. So, the contribution of transition metals to the levels of tyrosine nitrated proteins observed under basal conditions and, specially, in disease states related with high levels of these metal ions, seems to be quite clear. Altogether, current evidence unambiguously supports a central role of transition metals in determining the extent and selectivity of protein tyrosine nitration mediated both by peroxynitrite-dependent and independent mechanisms. 相似文献
14.
The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress. 相似文献
15.
Reperfusion of ischemic tissue can precipitate cell death. Much of this cell killing is related to the return of physiological pH after the tissue acidosis of ischemia. The mitochondrial permeability transition (MPT) is a key mechanism contributing to this pH-dependent reperfusion injury in hepatocytes, myocytes, and other cell types. When ATP depletion occurs after the MPT, necrotic cell death ensues. If ATP levels are maintained, at least in part, the MPT initiates apoptosis caused by mitochondrial swelling and release of cytochrome c and other proapoptotic factors. Cyclosporin A and acidotic pH inhibit opening of permeability transition pores and protect cells against oxidative stress and ischemia/reperfusion injury, whereas Ca2+, mitochondrial reactive oxygen species, and pH above 7 promote mitochondrial inner membrane permeabilization. Reperfusion with nitric oxide (NO) donors also blocks the MPT via a guanylyl cyclase and protein kinase G-dependent signaling pathway, which in turn prevents reperfusion-induced cell killing. In isolated mitochondria, a combination of cGMP, cytosolic extract, and ATP blocks the Ca2+-induced MPT, an effect that is reversed by protein kinase G inhibition. Thus, NO prevents pH-dependent cell killing after ischemia/reperfusion by a guanylyl cyclase/cGMP/protein kinase G signaling cascade that blocks the MPT. 相似文献
16.
Park AM Nagata K Sato EF Tamura T Shimono K Inoue M 《Archives of biochemistry and biophysics》2003,411(1):129-135
The aim of the present work is to elucidate the mechanism by which the respiration of Helicobacter pylori but not of Escherichia coli shows a strong resistance to nitric oxide (NO). Nitric oxide strongly but reversibly inhibited the oxygen consumption by sonicated membranes from H. pylori and Triton X-100-treated cells. Although the sensitivity of the H. pylori respiration to cyanide was low, it also increased after the treatment with Triton X-100. Kinetic analyses revealed that NO was rapidly degraded by E. coli and the Triton X-100-treated H. pylori, but not by the intact H. pylori. Thus, the low sensitivity to NO might reflect the low affinity of the cytochrome c oxidase for this radical within the membrane/lipid bilayers of H. pylori. Such properties of the oxidase in H. pylori membranes may, at least in part, underlie the mechanism by which this bacterium thrives in NO-enriched gastric juice. 相似文献
17.
Carlos A. Dias-Junior Evandro M. Neto-Neves Marcelo F. Montenegro Jose E. Tanus-Santos 《Nitric oxide》2010,23(4):469-288
While endogenous nitric oxide (NO) may be relevant to the beneficial hemodynamic effects produced by sildenafil during acute pulmonary embolism (APE), huge amounts of inducible NO synthase (iNOS)-derived NO may contribute to lung injury. We hypothesized that iNOS inhibition with S-methylisothiourea could attenuate APE-induced increases in oxidative stress and pulmonary hypertension and, therefore, could improve the beneficial hemodynamic and antioxidant effects produced by sildenafil during APE. Hemodynamic evaluations were performed in non-embolized dogs treated with saline (n = 4), S-methylisothiourea (0.01 mg/kg followed by 0.5 mg/kg/h, n = 4), sildenafil (0.3 mg/kg, n = 4), or S-methylisothiourea followed by sildenafil (n = 4), and in dogs that received the same drugs and were embolized with silicon microspheres (n = 8 for each group). Plasma nitrite/nitrate (NOx) and thiobarbituric acid reactive substances (TBARS) concentrations were determined by Griess and a fluorometric assay, respectively. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 25 ± 1.7 mm Hg and by 941 ± 34 dyn s cm?5 m?2, respectively. S-methylisothiourea neither attenuated APE-induced pulmonary hypertension, nor enhanced the beneficial hemodynamic effects produced by sildenafil after APE (>50% reduction in pulmonary vascular resistance). While sildenafil produced no change in plasma NOx concentrations, S-methylisothiourea alone or combined with sildenafil blunted APE-induced increases in NOx concentrations. Both drugs, either alone or combined, produced antioxidant effects. In conclusion, although iNOS-derived NO may play a key role in APE-induced oxidative stress, our results suggest that the iNOS inhibitor S-methylisothiourea neither attenuates APE-induced pulmonary hypertension, nor enhances the beneficial hemodynamic effects produced by sildenafil. 相似文献
18.
Ross AD Sheng H Warner DS Piantadosi CA Batinic-Haberle I Day BJ Crapo JD 《Free radical biology & medicine》2002,33(12):3207-1669
Superoxide plays a role in blood pressure regulation in certain vascular diseases, however, its involvement in regulating basal blood pressure is uncertain. Vascular superoxide concentrations are limited by extracellular superoxide dismutase (EC-SOD), which is highly expressed in the vasculature of most animal species. Metalloporphyrins are low molecular weight, synthetic, redox-active, catalytic antioxidants that act as SOD mimetics. We evaluated the effects of metalloporphyrins on blood pressure in different animal species. The metalloporphyrin AEOL10113 (5–10 μg/kg iv), but not native or polyethylene glycol-CuZnSOD, caused a dose-dependent reduction in blood pressure in anesthetized rats. AEOL10113 had no effect on blood pressure in mice (wild-type or EC-SOD knockouts), guinea pigs, dogs, or baboons at doses up to 5 mg/kg iv Structure-activity studies indicated that metalloporphyrins with high SOD activity were more effective in lowering rat blood pressure than low-activity analogs. The blood pressure effect of AEOL10113 was not attributable to the release of manganese, nor was it affected by inhibitors of nitric oxide synthase (L-NAME) and guanylate cyclase (ODQ, 8-bromo-cGMP, and methylene blue) or nitric oxide scavengers (HbAo). Chlorpheniramine attenuated the effect, suggesting that the blood pressure response in rats is related to histamine release rather than the protection of nitric oxide. 相似文献
19.
20.
Nitric Oxide:from a mysterious labile factor to the molecule of the Nobel Prize Recent progress in nitric oxide research 总被引:2,自引:0,他引:2
INTR0DUCTI0N:Nitric0xideandN0belPrizeScientificbreakthrough0ftenc0mesfr0munexpected0bserwtions,andimaginativeadventurousreseaxch.Intheearly8O'sattheNewYorkLab0ratoryofSunyHealthCentre,Dr.RobertFurchgottwaspresentedcontradictingresultsbyhistwotechnicians.Onetechnicianalwaysf0undtheacetycholinerelaxedthebloodvessel,whereasthe0therfounditalwayscausedcontraction.Furchg0ttnoticedthatonetechnicianhandledthevesselsroughlyandinadvertentlyrubbedoffthethinlayerofendotheliumfromthesurfaceoftheve… 相似文献