首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cormorants hunt both benthic (sedentary) and pelagic (motile) prey but it is not known if the energy costs of foraging on these prey differ. We used respirometry to measure the costs of diving in double-crested cormorants (Phalacrocorax auritus) foraging either for sedentary (fish pieces) or motile (juvenile salmon) prey in a deep dive tank. Short dives for sedentary prey were more expensive than dives of similar duration for motile prey (e.g. 20% higher for a 10s dive) whereas the reverse was true for long dives (i.e. long dives for motile prey were more expensive than for sedentary prey). Across dives of all durations, the foraging phase of the dive was more expensive when the birds hunted motile prey, presumably due to pursuit costs. The period of descent in all the dives undertaken appears to have been more expensive when the birds foraged on sedentary prey, probably due to a higher swimming speed during this period.  相似文献   

2.
The nature of prey selection by two centrarchids (white crappie and bluegill) is presented as a model incorporating optimal foraging strategies. The visual field of the foraging fish as represented by the reactive distance is analysed in detail to estimate the number of prey encounters per search bout. The predicted reactive distances are compared with experimental data. The energetic cost associated with fish foraging behaviour is calculated based on the sequence of events that takes place for each prey consumed. Comparisons of the relative abundance of prey species and size categories in the stomach to the lake environment indicated that both white crappie and bluegill (length < 100 mm) strongly select prey utilising an energy optimization strategy. In most cases, the fish exclusively selected large Daphnia ignoring evasive prey types (Cyclops, Diaptomids) and small cladocera. This selectivity is the result of fish actively avoiding prey with high evasion capabilities even though they appear to be high in energetic content and having translated this into optimal selectivity through capture success rates. The energy consideration and visual system, apart from the forager's ability to capture prey, are the major determinants of prey selectivity for large-sized bluegill and white crappie still at planktivorous stages.  相似文献   

3.
Body insulation is critically important for diving marine endotherms. However,cormorants have a wettable plumage, which leads to poor insulation. Despitethis, these birds are apparently highly successful predatorsin most aquatic ecosystems. We studied the theoretical influenceof water temperature, dive depth, foraging techniques, and preyavailability on the energetic costs of diving, prey search time,daily food intake, and survival in foraging, nonbreeding greatcormorants (Phalacrocorax carbo). Our model was based on fieldmeasurements and on data taken from the literature. Water temperatureand dive depth influenced diving costs drastically, with predicted increasesof up to 250% and 258% in males and females, respectively. Changes inwater temperature and depth conditions may lead to an increaseof daily food intake of 500-800 g in males and 440-780 g infemales. However, the model predicts that cormorant foragingparameters are most strongly influenced by prey availability,so that even limited reduction in prey density makes birds unableto balance energy needs and may thus limit their influence onprey stocks. We discuss the ramifications of these results withregard to foraging strategies, dispersal, population dynamics,and intraspecific competition in this avian predator and pointout the importance of this model species for our understandingof foraging energetics in diving endotherms.  相似文献   

4.
Capsule: The spatial distribution and feeding efficiency of Little Egrets Egretta garzetta wintering in the gulf of Gabès, Tunisia, are affected by a commensal association with the Eurasian Spoonbills Platalea leucorodia.

Aims: To investigate the role of the interspecific interaction between Little Egrets and Eurasian Spoonbills in shaping the spatial distribution and feeding efficiency of Little Egrets.

Methods: Using count and behavioural data, we examined the co-occurrence of these species in flocks, and compared the foraging efficiency of Little Egrets feeding with Eurasian Spoonbills with that of solitary Little Egrets.

Results: We found that the presence of Eurasian Spoonbills doubled the chance of Little Egrets being present. Within mixed flocks, the number of Little Egrets increased with the number of Spoonbills. Moreover, Little Egrets foraging in association with Eurasian Spoonbills took fewer steps, had higher pecking rates and higher prey intake rates than solitary Little Egrets.

Conclusion: Little Egrets appear to obtain foraging efficiency benefits by following Eurasian Spoonbills. This interaction seems to play a role in determining the spatial distribution of Little Egrets.  相似文献   


5.
Research has shown that noise disturbance can disrupt the behavior of harbor porpoises. The significance of such disturbance is unclear. However, these animals may be vulnerable to starvation when disturbed due to their high energy requirements. Important parameters determining harbor porpoise energy balance are the size and energy content of prey, their foraging behavior and their energetic requirements for homeostasis, growth, and reproduction. Energy intake can be estimated using published data from tagged animals. Such analysis indicates a broad range of plausible levels of energy intake, in line with those from captive studies. Metabolizable energy intake estimates were most strongly affected by variations in target prey size and to a lesser extent, by the foraging intensity of porpoises. In all but the worst case scenarios, harbor porpoises are well equipped for their ecological niche due to their generalist diet, consisting of a range of moderate to high energy-density prey combined with ultra-high foraging rates and high capture success. If animals can find suitable prey, porpoises may be capable of recovering from some lost foraging opportunities. Minimizing disturbances is, however, important for their health. Further research into prey and the environment are required to fully test the assumption of vulnerability.  相似文献   

6.
Both in foraging groups and in a sequential prey encounter context, learning had a visible effect on the pattern of selection for three live prey types ( Ecdyonurus larvae, Hydropsyche larvae, and Gammarus ) by juvenile Atlantic salmon Salmo salar . Compared to wild-caught fish, naive, hatchery-reared fish that had not been exposed to natural prey ate Hydropsyche larvae in a remarkably low proportion, and consumed a higher proportion of Gammarus. Ecdyonurus experienced a high and rather steady predation rate across the experience gradient, but after a short period of experience with live prey the consumption rate for Hydropsyche increased drastically, and that of Gammarus decreased, matching the selection pattern exhibited by wild fish. Individual fish offered prey in a sequential encounter context increased consumption rates of all the prey types as they gained experience, but the improvement was higher for the prey that were less consumed initially. Fish became more selective as they approached satiation, conforming to the prediction of optimal foraging theory that higher predator's energy requirements, as well as low food availability, result in reduced selectivity. The results also suggest that fish from distinct populations can differ in the degree of diet selectivity according to their energetic requirements for growth. The fast learning response of Atlantic salmon parr towards novel prey probably allows fish to maintain a high foraging efficiency when faced with frequent changes in the availability of different prey types.  相似文献   

7.
We developed models to predict the effect of water velocity on prey capture rates and on optimal foraging velocities of two sympatric juvenile salmonids, coho salmon and steelhead. Mean fish size was ~80 mm, the size of age I+ coho and steelhead during their second summer in Southeast Alaska streams, when size overlap suggests that competition might be strongest. We used experimentally determined prey capture probabilities to estimate the effect of water velocity on gross energy intake rates, and we modeled prey capture costs using experimental data for search and handling times and published models of swimming costs. We used the difference between gross energy intake and prey capture costs to predict velocities at which each species maximized net energy intake rate. Predicted prey capture rates for both species declined from ~75 to 30–40 prey/h with a velocity increase from 0.30 to 0.60 m·s−1. We found little difference between coho and steelhead in predicted optimum foraging velocities (0.29 m·s−1 for coho and 0.30 m·s−1 for steelhead). Although prey capture ability appears to be more important than are prey capture costs in determining optimum foraging velocities, capture costs may be important for models that predict fish growth. Because coho are assumed to pay a greater swimming cost due to a less hydrodynamic body form, we also modeled 10 and 25% increases in hydrodynamic drag to assess the effect of increased prey capture costs. This reduced optimum velocity by 0 and 0.01 m∙s−1, respectively. Habitat segregation among equal-sized coho and steelhead does not appear to be related to the effects of water velocity on their respective foraging abilities.  相似文献   

8.
Generalist seabirds forage on a variety of prey items providing the opportunity to monitor diverse aquatic fauna simultaneously. For example, the coupling of prey consumption rates and movement patterns of generalist seabirds might be used to create three‐dimensional prey distribution maps (‘preyscapes’) for multiple prey species in the same region. However, the complex interaction between generalist seabird foraging behaviour and the various prey types clouds the interpretation of such preyscapes, and the mechanisms underlying prey selection need to be understood before such an application can be realized. Central place foraging theory provides a theoretical model for understanding such selectivity by predicting that larger prey items should be 1) selected farther from the colony and 2) for chick‐feeding compared with self‐feeding, but these predictions remain untested on most seabird species. Furthermore, rarely do we know how foraging features such as handling time, capture methods or choice of foraging location varies among prey types. We used three types of animal‐borne biologgers (camera loggers, GPS and depth‐loggers) to examine how a generalist Arctic seabird, the thick‐billed murre Uria lomvia, selects and captures their prey throughout the breeding season. Murres captured small prey at all phases of a dive, including while descending and ascending, but captured large fish mostly while ascending, with considerably longer handling times. Birds captured larger prey and dove deeper during chick‐rearing. As central place foraging theory predicted, birds travelling further also brought bigger prey items for their chick. The location of a dive (distance from colony and distance to shore) best explained which prey type was the most likely to get caught in a dive, and we created a preyscape surrounding our study colony. We discuss how these findings might aid the use of generalist seabirds as bioindicators.  相似文献   

9.
Availability of preferred salmonid prey and a sufficiently quiet acoustic environment in which to forage are critical to the survival of resident killer whales (Orcinus orca) in the northeastern Pacific. Although piscivorous killer whales rely on echolocation to locate and track prey, the relationship between echolocation, movement, and prey capture during foraging by wild individuals is poorly understood. We used acoustic biologging tags to relate echolocation behavior to prey pursuit and capture during successful feeding dives by fish-eating killer whales in coastal British Columbia, Canada. The significantly higher incidence and rate of echolocation prior to fish captures compared to afterward confirms its importance in prey detection and tracking. Extremely rapid click sequences (buzzes) were produced before or concurrent with captures of salmon at depths typically exceeding 50 m, and were likely used by killer whales for close-range prey targeting, as in other odontocetes. Distinctive crunching and tearing sounds indicative of prey-handling behavior occurred at relatively shallow depths following fish captures, matching concurrent observations that whales surfaced with fish prior to consumption and often shared prey. Buzzes and prey-handling sounds are potentially useful acoustic signals for estimating foraging efficiency and determining if resident killer whales are meeting their energetic requirements.  相似文献   

10.
Individual dispersal among colonies of Little Egrets Egretta garzetta   总被引:1,自引:0,他引:1  
Colonial waterbirds are unusual in that competition for nest-sites or mates may occur at a scale of a few metres, whereas thousands of birds may overlap in their foraging range at a larger scale. Dispersal has been evaluated for only a few such species, and its adaptive significance remains unclear. We studied Little Egret dispersal among all the colonies within the Camargue, southern France. The overall probability of dispersal between successive years was 0.45. The probability of dispersal was unaffected by a bird's age, or by any density-dependent effect of colony size. Juveniles dispersed at distances that would be expected if colony selection were random, while adults tended to remain within 10 km of their previous colony. We found no obvious environmental 'trigger' for an individual to disperse. Although our evidence is inconclusive, the short dispersal distances of adults are not consistent with foraging conditions as the primary trigger for dispersal. Little Egrets generally forage within 8 km of their colony, so birds dispersing less than 10 km would gain little advantage in response to unfavourable foraging conditions. Our data, with 75% of dispersing birds coming from decreasing colonies and 72% joining increasing colonies, suggest that individual dispersal depended on colony dynamics as a whole, i.e. (1) a social component of dispersal at the individual level, or (2) a simultaneous colony response to unfavourable environmental conditions or (3) both. Further investigation at a higher social level may be necessary to understand dispersal of this colonial nesting species.  相似文献   

11.
Abstract The foraging behaviour, web characteristics and prey availability of two sympatric orb-weaving spiders, Nephila plumipes and Eriophora transmarina (Araneae: Araneoidea), are compared. The spiders are similarly sized but have different temporal foraging patterns. Nephila plumipes spins a relatively permanent web and captures most of its prey during the day. Eriophora transmarina only forages at night, spinning a new web every night and usually dismantling it at dawn. These different foraging activities are most likely to be responsible for the observed differences in the types and rates of prey capture: E. transmarina captured mostly Lepidoptera that were more abundant at night than during the day, while N. plumipes captured mostly Hymenoptera that were more abundant during the day than at night. While nocturnal E. transmarina have less time available for foraging than the diurnal N. plumipes, the former has a substantially higher nocturnal prey capture rate. We argue that the difference between the species in their prey capture rates are likely to be due to differences in the architecture of their webs.  相似文献   

12.
Predatory diving birds, such as cormorants (Phalacrocoracidae), have been generally regarded as visually guided pursuit foragers. However, due to their poor visual resolution underwater, it has recently been hypothesized that Great Cormorants do not in fact employ a pursuit-dive foraging technique. They appear capable of detecting typical prey only at short distances, and primarily use a foraging technique in which prey may be detected only at close quarters or flushed from a substratum or hiding place. In birds, visual field parameters, such as the position and extent of the region of binocular vision, and how these are altered by eye movements, appear to be determined primarily by feeding ecology. Therefore, to understand further the feeding technique of Great Cormorants we have determined retinal visual fields and eye movement amplitudes using an ophthalmoscopic reflex technique. We show that visual fields and eye movements in cormorants exhibit close similarity with those of other birds, such as herons (Ardeidae) and hornbills (Bucerotidae), which forage terrestrially typically using a close-quarter prey detection or flushing technique and/or which need to examine items held in the bill before ingestion. We argue that this visual field topography and associated eye movements is a general characteristic of birds whose foraging requires the detection of nearby mobile prey items from within a wide arc around the head, accurate capture of that prey using the bill, and visual examination of the caught prey held in the bill. This supports the idea that cormorants, although visually guided predators, are not primarily pursuit predators, and that their visual fields exhibit convergence towards a set of characteristics that meet the perceptual challenges of close-quarter prey detection or flush foraging in both aquatic and terrestrial environments.  相似文献   

13.
ABSTRACT Estimating detection error, as well as the magnitude of other potential survey biases, is essential when sampling efforts play a role in the estimation of population size and management of wildlife populations. We quantified visual biases in aerial surveys of nesting wading birds (Ciconiiformes) in colonies in the Florida Everglades using a negative binomial count regression model to compare numbers of nests in quadrats counted on the ground with numbers estimated from aerial photographs of the same quadrats. The model also allowed the determination of degree of difference between monitoring results based upon such factors as nest density, vegetative cover, and nest turnover rates. Aerial surveys of White Ibis (Eudocimus albus) colonies underestimated the true number of nests found during ground counts by 11.1%, and underestimates were significantly greater (P= 0.047) in a colony with high nest turnover. Error rates did not differ for quadrats that varied in the density of White Ibis nests did not differ, and visual bias did not increase with vegetative complexity (P= 0.73). Estimates of nest density in colonies of Great Egrets (Ardea alba) based on aerial surveys were higher than ground counts for 38% of the quadrats sampled, and mean visual bias was 23.1%. Species misidentification likely contributed to visibility bias for Great Egrets in our study, with some Snowy Egrets almost certainly mistaken for Great Egrets in aerial photos. Biases of the magnitude we observed fro Great Egrets and White Ibises can mask true population trends in long‐term monitoring and, therefore, we recommend that detection probability be explicitly evaluated when conducting aerial surveys of nesting birds.  相似文献   

14.
A visual foraging model (VFM) used light-dependent reaction distance and capture success functions to link observed prey fish abundance and distribution to predation rates and the foraging performance of piscivorous cutthroat trout Oncorhynchus clarki in Lake Washington (WA, U.S.A.). Total prey density did not correlate with predation potential estimated by the foraging model for cutthroat trout because prey were rarely distributed in optically favourable conditions for detection. Predictions of the depth-specific distribution and timing of cutthroat trout foraging were qualitatively similar to diel stomach fullness patterns observed in field samples. Nocturnal foraging accounted for 34–64% of all prey fish consumption in simulations for 2002 and 2003. Urban light contamination increased the access of nocturnally foraging cutthroat trout to vertically migrating prey fishes. These results suggest that VFMs are useful tools for converting observed prey fish density into predictions of predator consumptions and behavioural responses of predators to environmental change.  相似文献   

15.
The foraging success of predators depends on how their consumption of prey is affected by prey density under different environmental settings. Here, we measured prey capture rates of drift-feeding juvenile brown trout and European grayling at different prey densities in an artificial stream channel at 5 and 11?°C. Capture rates were lower at 5 than at 11?°C, and the difference was most pronounced at high prey densities. At high prey densities, we also observed that European grayling had higher capture rates than brown trout. Type III functional response curves, i.e. sigmoidal relationships between capture rates and prey densities, fitted the data better than type I (linear) and II (hyperbolic) curves for all four combinations of temperatures and species. These results may explain the dominance of grayling in stream habitats with low water velocities and results such as these may be of use when developing foraging-based food web models of lotic ecosystems that include drift-feeding salmonids.  相似文献   

16.
Robert Gwiazda 《Hydrobiologia》1997,353(1-3):39-43
The foraging ecology of the Great Crested Grebe wasstudied at Dobczyce Reservoir in southernPoland. The mean diving frequency of grebes withoutyoung was 19.3 h–1, while grebes with young dived onaverage 32.5 h–1. The mean number of apparent prey caughtby grebes without young was 0.5 fish h–1. Birds with young caught a greater number, on average4.5 fish h–1. Probably, birds fishing forthemselves ate much prey underwater. The total lengthof the fish consumed by adult grebes was on average10.0 cm. Adults ate larger fish in the breeding seasonthan in the autumn migration period. Young birds werefed fish about 8.3 cm long. More than 50% of preywere bleak. The mean success of dives of birds withoutyoung was 3.3% and for individuals with young 14.8%.A comparison of the weight of the daily food demandwith the weight of fish brought to the surface showed that it was 70% lower than the dailyfood demand. The poor relation between prey size anddiving success shows that grebes can eat both small andlarge fish below the water surface.  相似文献   

17.
Aggressive behavior of Pachydiplax longipennis during foraging was quantified by observing focal individuals on arrays of artificial perches. Pachydiplax apparently aggressively defend, for up to several hours at a time, one or a few feeding perches. Seventeen percent of all behaviors included agonistic actions, e.g., chasing or physical contact. The frequency of interactions was correlated positively with ambient temperature, solar radiation, prey density and density of other dragonflies. Both sexes initiated and responded to intra- and interspecific aggression; intraspecific interactions were more intense, however. Males had significantly higher interaction rates and fighting success than females, and intraspecific male–male contests were particularly intense. When prey were visibly localized, contest winners commonly gained perches closer to the prey swarm, and aggressive behavior was apparently correlated with feeding opportunity. Despite the frequency of aggression, these dragonflies allocated only about 19 s, on average, to agonistic behavior during 30-min observation periods. This and other costs appear small compared to foraging benefits of occupying a favorable perch, although at a very high interaction intensity high energy costs and lower intake reduce the net energy gain.  相似文献   

18.
ABSTRACT Nonbreeding shorebirds often alternate social structure between anonymous flocks and territorial behavior in response to different environmental factors. To evaluate specific drivers for one species, we studied the spacing behavior of wintering Western Sandpipers (Calidris mauri) at Bahía Santa María, northwestern Mexico, using behavioral observations. The density, population structure, and territorial behavior of Western Sandpipers differed among three habitat types. Cattail marshes supported 110 birds per ha, 49% males, and no territorial birds. Mangrove flats supported 288 birds per ha, 58% males, and 5% territorial birds. Brackish flats supported 365 birds per ha, 76% males, and 7% territorial birds. Territories consisted of rectangular strips (5–9 m long, N= 77). Territory length was not related to either bird density or number of territorial birds by plot, but was positively related to nearest bird distance. Aggression rate was inversely related to territory length, suggesting that territory length is set by the costs of defense. Foraging rate was independent of territory length, and prey densities in territories did not differ from those in areas used by nonterritorial birds. Males were more likely to be territorial and had a higher aggression rate than females, suggesting that males, which forage more on surface prey, were more affected by foraging interference. Our results suggest that the territorial behavior of Western Sandpipers in our study was an opportunistic strategy to reduce foraging interference. The variation in spacing behavior we documented provides evidence that interference competition affects the social structure of Western Sandpipers during the nonbreeding season.  相似文献   

19.
In a patchy environment, predators are expected to increase turning rate and start an area-restricted search (ARS) when prey have been encountered, but few empirical data exist for large predators. By using GPS loggers with devices measuring prey capture, we studied how a marine predator adjusts foraging movements at various scales in relation to prey capture. Wandering albatrosses use two tactics, sit and wait and foraging in flight, the former tactic being three times less efficient than the latter. During flight foraging, birds caught large isolated prey and used ARS at scales varying from 5 to 90 km, with large-scale ARS being used only by young animals. Birds did not show strong responses to prey capture at a large scale, few ARS events occurred after prey capture, and birds did not have high rates of prey capture in ARS. Only at small scales did birds increase sinuosity after prey captures for a limited time period, and this occurred only after they had caught a large prey item within an ARS zone. When this species searches over a large scale, the most effective search rule was to follow a nearly straight path. ARS may be used to restrict search to a particular environment where prey capture is more predictable and profitable.  相似文献   

20.
Several traits related to foraging behaviour were assessed in young-of-the-year produced from largemouth bass Micropterus salmoides that had been exposed to four generations of artificial selection for vulnerability to angling. As recreational angling may target foraging ability, this study tested the hypothesis that selection for vulnerability to angling would affect behaviours associated with foraging ecology and prey capture success. Fish selected for low vulnerability to angling captured more prey and attempted more captures than high vulnerability fish. The higher capture attempts, however, ultimately resulted in a lower capture success for low vulnerability fish. Low vulnerability fish also had higher prey rejection rates, marginally shorter reactive distance and were more efficient at converting prey consumed into growth than their high vulnerability counterparts. Selection due to recreational fishing has the potential to affect many aspects of the foraging ecology of the targeted population and highlights the importance of understanding evolutionary effects and how these need to be considered when managing populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号