首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the involution of the mammary gland there is destruction of the basement membrane as the secretory alveolar structures degenerate. Immunofluorescence staining of sections of rat mammary gland with antibodies to 72 KD gelatinase (MMP-2) and stromelysin (MMP-3) revealed increased production of these two proteinases during involution. This increased expression was mostly restricted to myoepithelial cells. Increased expression during involution was also demonstrated by immunoblotting techniques. Gelatin zymography indicated that the predominant metalloproteinase present in involuting rat mammary glands was a 66 KD gelatinase.  相似文献   

2.
3.
Synthesis of lactoferrin and casein by the bovine mammary gland was determined in an experimental model where lactation was maintained in one mammary half, while involution was induced in the contralateral half. Culture of explants with prolactin had no consistent effect on synthesis of casein or lactoferrin in tissue from either mammary half. Endotoxin and tumor necrosis factor-α generally decreased synthesis of casein and lactoferrin, suggesting that these inflammatory mediators are not directly responsible for increasing lactoferrin synthesis during mammary inflammation or involution. Synthesis of lactoferrin was increased and casein decreased in the involuting mammary half vs. the lactating half. These results suggest that local factors in the mammary gland play a role in the regulation of lactoferrin synthesis during involution.  相似文献   

4.
The extracellular matrix (ECM) is an important regulator of mammary epithelial cell function both in vivo and in culture. Substantial remodeling of ECM accompanies the structural changes in the mammary gland during gestation, lactation and involution. However, little is known about the nature of the enzymes and the processes involved. We have characterized and studied the regulation of cell-associated and secreted mammary gland proteinases active at neutral pH that may be involved in degradation of the ECM during the different stages of mammary development. Mammary tissue extracts from virgin and pregnant CD-1 mice resolved by zymography contained three major proteinases of 60K (K = 10(3) Mr), 68K and 70K that degraded denatured collagen. These three gelatinases were completely inhibited by the tissue inhibitor of metalloproteinases. Proteolytic activity was lowest during lactation especially for the 60K gelatinase which was shown to be the activated form of the 68K gelatinase. The activated 60K form decreased prior to parturition but increased markedly after the first two days of involution. An additional gelatin-degrading proteinase of 130K was expressed during the first three days of involution and differed from the other gelatinases by its lack of inhibition by the tissue inhibitor of metalloproteinases. The activity of the casein-degrading proteinases was lowest during lactation. Three caseinolytic activities were detected in mammary tissue extracts. A novel 26K cell-associated caseinase--a serine arginine-esterase--was modulated at different stages of mammary development. The other caseinases, at 92K and a larger than 100K, were not developmentally regulated. To find out which cell type produced the proteinases in the mammary gland, we isolated and cultured mouse mammary epithelial cells. Cells cultured on different substrata produced the full spectrum of gelatinases and caseinases seen in the whole gland thus implicating the epithelial cells as a major source of these enzymes. Analysis of proteinases secreted by cells grown on a reconstituted basement membrane showed that gelatinases were secreted preferentially in the direction of the basement membrane. The temporal pattern of expression of these proteinases and the basal secretion of gelatinases by epithelial cells suggest their involvement in the remodelling of the extracellular matrix during the different stages of mammary development and thus modulation of mammary cell function.  相似文献   

5.
6.
Matrix metalloproteinases and their expression in mammary gland   总被引:5,自引:1,他引:4  
The matrix metalloproteinases (MMPs) are a family of zine-dependent endopeptidases that play a key role in both normal and pathological processes involving tissue remodeling events.The expression of these proteolytic enzymes is highly regulated by a balance between extracellular matrix (ECM) deposition and its degradation,and is controlled by growth factors,cytokines,hormones,as well as interactions with the ECM macromolecules.Furthermore,the activity of the MMPs is regulated by their natural endogenous inhibitors,which are members of the tissue inhibitor of metalloproteinases (TIMP) family.In the normal mammary gland,MMPs are expressed during ductal development,lobulo-alveolar development in pregnancy and involution after lactation.Under pathological conditions,such as tumorigenesis,the dysregulated expression of MMPs play a role in tumor initiation,progression and malignant conversion as well as facilitating invasion and metastasis of malignant cells through degradation of the ECM and basement membranes.  相似文献   

7.
Brca1 mRNA was detectable in female mouse mammary gland tissue from adult virgins, during pregnancy and early lactation. It was associated with phases of mammary epithelial cell proliferation and differentiation but the pattern of Brca1 expression was dissociable from that of a true differentiation marker, beta-casein, by virtue of its significant expression in the virgin gland and termination of its expression in early lactation. In a primary cell culture model, association of a laminin-rich extracellular matrix (ECM) with mammary epithelial cells was required for cell survival and cell differentiation and suppressed Brca1 expression in these cells. ECM-association may significantly contribute to the final restriction in Brca1 expression in the lactating gland in vivo. Interestingly, our results suggest that mammary epithelial cells undergo apoptosis both when expressing and when not expressing Brca1, depending on whether the dying cell populations had been terminally differentiated or not.  相似文献   

8.
9.
10.
After cessation of lactation, the mammary gland undergoes involution, which is characterized by a massive epithelial cell death and proteolytic degradation of the extracellular matrix. Whereas the expression patterns and also the function of TGF-beta isoforms during mammary gland branching morphogenesis and lactation are well understood, their expression during postlactational involution and therefore a possible role in this process is poorly known. In this study we show that TGF-beta3 expression is dramatically induced (>fivefold) during mouse mammary gland involution when compared to that of virgin mouse, reaching a maximal expression level at day 4 after weaning. In contrast, other TGF-beta isoforms do not display significant increase in expression during involution (TGF-beta1, 1.3-fold and TGF-beta2, <1.5-fold) when compared to that of virgin or lactating mice. During mammary gland involution, TGF-beta3 is expressed in the epithelial layer and particularly in myoepithelial cells. A comparison of the kinetics of TGF-beta3 expression to that of programmed cell death and degradation of the basement membrane suggests that TGF-beta3 functions in the remodeling events of the extracellular matrix during the second stage of involution.  相似文献   

11.
Alkaline RNAase (ribonuclease) and RNAase inhibitor were assayed to determine the potential role of the degradative process in regulating the amount of RNA in the mammary gland and mammary tumour. Very little free alkaline RNAase activity was found in the cytosol fraction of the mammary gland of virgin, pregnant, lactating or involuting Fischer rats. However, addition of p-chloromercuribenzoate to the assay medium revealed latent RNAase which, when expressed on a DNA basis, decreased during pregnancy and lactation. The cytosol latent RNAase is stable in 0.125 M-H2SO4. The non-cytosol RNAase activity also decreased during pregnancy and lactation. Addition of Triton X-100 produced slightly higher activity at all stages tested. The inhibitor activity in rat mammary gland was very low before pregnancy, increased gradually during pregnancy and more dramatically at parturition, continued to increase throughout lactation and returned to resting-gland values by the sixth day of involution. The increase during pregnancy may be due to the increased cellularity of the gland, whereas the gain during lactation was more than could be accounted for by increases in cell number. The R3230AC transplantable mammary tumour resembles the normal gland in early lactation with respect to both its cytosol and non-cytosol alkaline RNAase activities and its moderately high content of RNAase inhibitor. The relatively high inhibitor and low RNAase activities in both the gland of the lactating rat and in the tumour are of potential significance in maintaining high amounts of RNA and increased rates of protein synthesis in these tissues.  相似文献   

12.
13.
Previous studies in our laboratory have demonstrated the mammary-specific expression of the entire rat beta-casein gene with 3.5 kilobases (kb) of 5' and 3.0 kb of 3' DNA in transgenic mice (Lee et al., Nucleic Acids Res. 16:1027-1041, 1988). In an attempt to localize sequences that dictate this specificity, lines of transgenic mice carrying two different rat beta-casein promoter-bacterial chloramphenicol acetyltransferase (cat) fusion genes have been established. Twenty and eight lines of transgenic mice carrying two fusion genes containing either 2.3 or 0.5 kb, respectively, of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A were identified, most of which transmitted the transgenes to their offspring in a Mendelian pattern. CAT activity was detected predominantly in the lactating mammary gland of female transgenic mice but not in the male mammary fat pad. A several-hundred-fold variation in the level of cat expression was observed in the mammary gland of different lines of mice, presumably due to the site of integration of the transgenes. CAT activity was increased in the mammary gland during development from virgin to midpregnancy and lactation. Unexpectedly, the casein-cat transgenes were also expressed in the thymus of different lines of both male and female mice, in some cases at levels equivalent to those observed in the mammary gland, and in contrast to the mammary gland, CAT activity was decreased during pregnancy and lactation in the thymus. Thus, 0.5 kb of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A are sufficient to target bacterial cat gene expression to the mammary gland of lactating mice.  相似文献   

14.
In an attempt to understand the roles of endothelin-1 (ET-1) and vasoactive intestinal contractor/endothelin-2 (VIC/ET-2), we have studied the genes for both peptides to be expressed in the mammary gland of lactating mice. We observed through real-time PCR analysis that ET-1 and VIC/ET-2 gene expression gradually increase after parturition and that ET-1 gene expression is significantly higher than that of VIC/ET-2. The distribution of ET-1 peptide was found to be localized mainly in the epithelial cells of the mammary gland at 14th day of lactation. ET-1 gene expression increases significantly, parallel to the increase in beta-casein gene expression, in epithelial cell lines (HC11) of mouse mammary gland after hormonal stimulation by addition of dexamethazone and prolactin. The observed increase in ET-1 expression in differentiated epithelial cells suggests physiological roles for ET-1, including milk production and secretion in the mammary gland of lactating mice.  相似文献   

15.
Breast cancer patients diagnosed postpartum have poor prognosis. The postpartum mammary gland undergoes tissue regression to return to the pre-pregnant state. This involution is characterized by wound healing programs known to be tumor promotional in other contexts. Previous studies have shown that mammary extracellular matrix (ECM) from nulliparous rats has tumor suppressive attributes, while mammary ECM from involuting mammary glands is promotional. In models of pregnancy-associated breast cancer, non-steroidal anti-inflammatory drug (NSAID) treatment targeted to postpartum involution inhibits tumor progression, in part by suppressing COX-2 dependent collagen deposition. Because mammary ECM proteins are coordinately regulated, NSAID treatment is anticipated to result in additional protective changes in the mammary extracellular matrix. Here, systemic NSAID treatment was utilized during postpartum involution to reduce mammary COX-2 activity. ECM was isolated from actively involuting glands of rats treated with NSAIDs and compared to ECM isolated from control-involution and nulliparous rats in 3D cell culture and xenograft assays. Compositional changes in ECM between groups were identified by proteomics. In four distinct 3D culture assays, normal and transformed mammary epithelial cells plated in NSAID-involution ECM, phenocopied cells plated in ECM from nulliparous rats rather than ECM from control-involution rats. Tumor cells mixed with NSAID-involution ECM and injected orthotopically in mice formed smaller tumors than cells mixed with control-involution ECM. Proteomic analyses identified and 3D culture assays implicated the ECM protein tenascin-C as a potential mediator of tumor progression during involution that is decreased by NSAID treatment. In summary, NSAID treatment decreases tumor-promotional attributes of postpartum involution mammary ECM.  相似文献   

16.
To study the role of glucocorticoid receptor (GR) at different stages of mammary gland development, mammary anlage were rescued from GR-/- mice by transplantation into the cleared fat pad of wild-type mice. In virgin mice, GR-/- outgrowths displayed abnormal ductal morphogenesis characterized by distended lumena, multiple layers of luminal epithelial cells in some regions along the ducts, and increased periductal stroma. In contrast, the loss of GR did not result in overt phenotypic changes in mammary gland development during pregnancy, lactation, and involution. Surprisingly, despite the known synergism between glucocorticoids and prolactin in the regulation of milk protein gene expression, whey acidic protein and beta-casein mRNA levels were unaffected in GR-/- transplants as compared with wild-type transplants. That mineralocorticoid receptor (MR) might compensate for the loss of GR was suggested by the detection of MR in the mammary gland at d 1 of lactation. This hypothesis was tested using explant cultures derived from the GR-/- transplants in which the mineralocorticoid fludrocortisone was able to synergistically induce beta-casein gene expression in the presence of prolactin and insulin. These studies suggest that MR may compensate for the absence of GR at some, but not at all stages of mammary gland development.  相似文献   

17.
Detailed analysis of protein tyrosine phosphatase (PTP) expression in mouse mammary gland and mammary epithelial cells using a set of degenerate primers corresponding to the PTP core domain sequence revealed the presence of 16 different receptor-type and intracellular PTPs. Northern blot and RT-PCR analyses revealed that some PTPs were up-regulated during gestation, suggesting that these enzymes are involved in development of mammary gland. However, expression of most PTPs dramatically decreased during lactation, whereas the beta-casein gene expression was increased and remained at a high level. At the involution stage after weaning, most PTPs were up-regulated and their expression returned almost to the virgin level. Such up-regulation was also induced by forced weaning in lactating mother mice. These results suggest the possible contribution of PTPs to the development, involution, and remodeling of mammary gland and their possible inhibitory action on maintaining high expression of milk genes during lactation.  相似文献   

18.
Bovine lactoferrin in involuting mammary tissue was identified by immunohistochemistry and tissue explant culture. Immunoreactive lactoferrin was associated with mammary epithelial cells. Immunostaining for lactoferrin increased during involution, in contrast to declining immunostaining of epithelia for the milk-specific protein β-lactoglobulin. Immunostaining for lactoferrin also was observed at the basal region of alveolar epithelia, perhaps in association with basement membrane components. Lactoferrin was preferentially synthesized in involuting mammary tissue compared with lactating tissue. Synthesis of lactoferrin in the involuting mammary gland occurs despite the apparent decline in synthesis of milk-specific proteins.  相似文献   

19.
小鼠乳腺细胞凋亡及瘦素对凋亡的影响   总被引:1,自引:0,他引:1  
目的系统的研究小鼠乳腺发育周期中乳腺细胞凋亡情况,并阐明瘦素对乳腺细胞凋亡的影响。方法以小鼠乳腺为实验材料,采用TUNEL法系统地研究小鼠乳腺在青春期、妊娠期、泌乳期和退化期的整个发育周期中的细胞凋亡情况,并通过培养基中添加瘦素的方法研究瘦素对乳腺细胞凋亡的影响。结果在青春期50~60d、妊娠期10~16d、退化期1~10d检测到较多的细胞凋亡,其中退化期细胞凋亡最为显著。添加瘦素培养的乳腺细胞凋亡信号明显增多。结论小鼠乳腺发育不同时期细胞凋亡同结构和功能发育之间相互联系。同时通过小鼠乳腺组织体外培养的方法,证明瘦素在退化期乳腺组织中可明显诱导组织凋亡。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号