共查询到20条相似文献,搜索用时 0 毫秒
1.
Sinclair A Smith Scott J Montain Gary P Zientara Roger A Fielding 《Journal of applied physiology》2004,96(6):2288-2292
Recent human isolated muscle fiber studies suggest that phosphocreatine (PCr) and creatine (Cr) concentrations play a role in the regulation of mitochondrial respiration rate. To determine whether similar regulatory mechanisms are present in vivo, this study examined the relationship between skeletal muscle mitochondrial respiration rate and end-exercise PCr, Cr, PCr-to-Cr ratio (PCr/Cr), ADP, and pH by using (31)P-magnetic resonance spectroscopy in 16 men and women (36.9 +/- 4.6 yr). The initial PCr resynthesis rate and time constant (T(c)) were used as indicators of mitochondrial respiration after brief (10-12 s) and exhaustive (1-4 min) dynamic knee extension exercise performed in placebo and creatine-supplemented conditions. The results show that the initial PCr resynthesis rate has a strong relationship with end-exercise PCr, Cr, and PCr/Cr (r > 0.80, P < 0.001), a moderate relationship with end-exercise ADP (r = 0.77, P < 0.001), and no relationship with end-exercise pH (r = -0.14, P = 0.34). The PCr T(c) was not as strongly related to PCr, Cr, PCr/Cr, and ADP (r < 0.77, P < 0.001-0.18) and was significantly influenced by end-exercise pH (r = -0.43, P < 0.01). These findings suggest that end-exercise PCr and Cr should be taken into consideration when PCr recovery kinetics is used as an indicator of mitochondrial respiration and that the initial PCr resynthesis rate is a more reliable indicator of mitochondrial respiration compared with the PCr T(c). 相似文献
2.
M Roussel J P Mattei Y Le Fur B Ghattas P J Cozzone D Bendahan 《Journal of applied physiology》2003,94(3):1145-1152
Onset of intracellular acidosis during muscular exercise has been generally attributed to activation or hyperactivation of nonoxidative ATP production but has not been analyzed quantitatively in terms of H(+) balance, i.e., production and removal mechanisms. To address this issue, we have analyzed the relation of intracellular acidosis to H(+) balance during exercise bouts in seven healthy subjects. Each subject performed a 6-min ramp rhythmic exercise (finger flexions) at low frequency (LF, 0.47 Hz), leading to slight acidosis, and at high frequency (HF, 0.85 Hz), inducing a larger acidosis. Metabolic changes were recorded using (31)P-magnetic resonance spectroscopy. Onset of intracellular acidosis was statistically identified after 3 and 4 min of exercise for HF and LF protocols, respectively. A detailed investigation of H(+) balance indicated that, for both protocols, nonoxidative ATP production preceded a change in pH. For HF and LF protocols, H(+) consumption through the creatine kinase equilibrium was constant in the face of increasing H(+) generation and efflux. For both protocols, changes in pH were not recorded as long as sources and sinks for H(+) approximately balanced. In contrast, a significant acidosis occurred after 4 min of LF exercise and 3 min of HF exercise, whereas the rise in H(+) generation exceeded the rise in H(+) efflux at a nearly constant H(+) uptake associated with phosphocreatine breakdown. We have clearly demonstrated that intracellular acidosis in exercising muscle does not occur exclusively as a result of nonoxidative ATP production but, rather, reflects changes in overall H(+) balance. 相似文献
3.
Mark FC Bock C Pörtner HO 《American journal of physiology. Regulatory, integrative and comparative physiology》2002,283(5):R1254-R1262
The hypothesis of an oxygen-limited thermal tolerance was tested in the Antarctic teleost Pachycara brachycephalum. With the use of flow-through respirometry, in vivo (31)P-NMR spectroscopy, and MRI, we studied energy metabolism, intracellular pH (pH(i)), blood flow, and oxygenation between 0 and 13 degrees C under normoxia (PO(2): 20.3 to 21.3 kPa) and hyperoxia (PO(2): 45 kPa). Hyperoxia reduced the metabolic increment and the rise in arterial blood flow observed under normoxia. The normoxic increase of blood flow leveled off beyond 7 degrees C, indicating a cardiovascular capacity limitation. Ventilatory effort displayed an exponential rise in both groups. In the liver, blood oxygenation increased, whereas in white muscle it remained unaltered (normoxia) or declined (hyperoxia). In both groups, the slope of pH(i) changes followed the alpha-stat pattern below 6 degrees C, whereas it decreased above. In conclusion, aerobic scope declines around 6 degrees C under normoxia, marking the pejus temperature. By reducing circulatory costs, hyperoxia improves aerobic scope but is unable to shift the breakpoint in pH regulation or lethal limits. Hyperoxia appears beneficial at sublethal temperatures, but no longer beyond when cellular or molecular functions become disturbed. 相似文献
4.
Yoshida T 《Journal of PHYSIOLOGICAL ANTHROPOLOGY and Applied Human Science》2002,21(5):247-255
Time-resolved 31-phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) of the biceps femoris muscles was performed during exercise and recovery in six healthy sedentary male subjects (maximal oxygen uptake; 46.6 +/- 1.7 (SEM) ml.kg-1.min-1), 5 male sprinters (56.2 +/- 2.5), and 5 male long-distance runners (73.6 +/- 2.2). Each performed 4 min of knee flexion exercises at absolute values of 1.63 W and 4.90 W, followed by 5 min of recovery in a prone position in a 2.1 T superconducting magnet with a 67 cm bore. 31P-MRS spectra were recorded every 12.8 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of phosphocreatine peaks (PCr) and inorganic phosphate (Pi) were performed. The work loads in the present study were selected as mild exercise (1.63 W) and heavy exercise (4.90 W), corresponding to 18-23% and 54-70% of maximal exercise intensity. Long-distance runners showed a significantly smaller decrement in PCr and less acidification at a given exercise intensity compared to those shown by sedentary subjects. The transient responses of PCr and Pi during recovery were characterized by first-order kinetics. After exercise, the recovery rates of PCr and Pi were significantly faster in long-distance runners than in sedentary subjects (P < 0.05). Since it is postulated that PCr resynthesis is controlled by aerobic metabolism and mitochondrial creatine kinase, it is suggested that the faster PCr and Pi recovery rates and decreased acidification seen in long-distance runners during and after exercise might be attributed to their greater capacity for aerobic metabolism. 相似文献
5.
Richard W. Briggs George K. Radda Keith R. Thulborn 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1985,845(3):343-348
The kinetics of the reaction catalyzed by arginine kinase have been determined at 9.5 and 23°C for in vivo leg muscle of Carcinus maenas (the common shore crab) using the noninvasive technique of 31P-NMR spectroscopy. Concentrations of mobile phosphorus metabolites were the same at both temperatures: 78.7 mM for arginine phosphate, 9.0 mM for adenosine triphosphate (ATP), and 2.6 mM for inorganic phosphate (Pi), as estimated from NMR resonance intensities and literature values for ATP concentration as assayed by traditional biochemical methods. Apparent unidirectional rate constants for formation of ATP from arginine phosphate and ADP were 0.09 s?1 at 9.5°C and 0.27 s?1 at 23°C. Pseudo-first-order rate constants for arginine phosphate generation from Arg and ATP were 0.38 and 1.10 s?1 at 9.5 and 23°C, respectively. In vivo Q10 for the arginine kinase reaction between 9.5 and 23°C was thus 2.2 for both directions. When the kinetic data are analyzed using the Arrhenius equation, activation energies of 126 kJ/mol for ATP formation and 105 kJ/mol for arginine phosphate formation are found. The measured chemical fluxes through arginine kinase in the forward reaction (arginine phosphate hydrolysis) were twice those in the reverse reaction, consistent with either compartmentation of substrates or participation of substrates in alternative metabolic pathways. 相似文献
6.
E Le Rumeur L Le Moyec F Chagneau M Levasseur P Toulouse R Le Bars J de Certaines 《Archives internationales de physiologie et de biochimie》1989,97(5):381-388
Metabolic impairment in skeletal muscle was suggested to be involved in the development of local mechanical fatigue but until now results have dealt with short activity periods whereas little data on exhaustive and prolonged exercises are available. Stimulations of rat leg muscle lasting 45 min were induced by tetanic trains delivered via sciatic nerve at five different rhythms. Energy metabolism of the stimulated gastrocnemius muscle was followed by 31P NMR spectroscopy using surface coil while mechanical function was recorded. Our data showed a decrease in the force level to very low values a few minutes after exercise onset. This mechanical impairment only induced a transient metabolic failure followed by rapid restoration of high phosphocreatine (PCr) values and intracellular pH, without mechanical recovery. In addition, at the end of exercise, the PCr content was proportional to the fatigue level. As these experiments could not have impaired neuromuscular junction, the data would indicate that fatigue was maintained by a mechanism which does not appear to depend directly on muscle cell energy stores. 相似文献
7.
Vezzoli A Gussoni M Greco F Zetta L Cerretelli P 《Biochimica et biophysica acta》2004,1608(2-3):163-170
The temperature (T)-dependence of energy consumption of resting anaerobic frog gastrocnemii exposed to different, changing electrochemical gradients was assessed. To this aim, the rate of ATP resynthesis (delta approximately P/deltat) was determined by (31)P- and (1)H-MRS as the sum of the rates of PCr hydrolysis (delta[PCr]/deltat) and of anaerobic glycolysis (delta[La]/ deltat, based on a approximately P/La ratio of 1.5). The investigated T levels were 15, 20 and 25 degrees C, whereas initial extracellular pH (pHe) values were 7.9, 7.3 and 7.0, i.e. higher, equal or lower, respectively, than intracellular pH (pHi). The latter was changing with T according to the neutrality point (dpH/dT=-0.0165 pH units/ degrees C). Both rates of PCr hydrolysis and of lactate accumulation and that of their sum, expressed as delta approximately P/deltat, were highly T-dependent. By contrast, the pHe-dependence of the muscle energy balance was nil or extremely limited at 15 and 20 degrees C, respectively, but remarkable at 25 degrees C (with a depression of the ATP resynthesis rate up to 25% with a decrease of pHe from 7.9 to 7.0). The pHe-dependent reduction of metabolic rate was associated with a down-regulation of anaerobic glycolysis due to reduced activity of ion-transporters controlling acid-base balance and/or to a shift from Na(+)/H(+) to a more efficient Na(+)-dependent Cl(-)/HCO(3)(-) exchanger. Uncoupling of glycogenolysis from P-metabolite concentrations, both as function of T (>or=20 degrees C) and of pHe (相似文献
8.
S Iotti R Funicello P Zaniol B Barbiroli 《Biochemical and biophysical research communications》1991,176(3):1204-1209
31-Phosphorus magnetic resonance spectroscopy was used to investigate in vivo the kinetics of inorganic phosphate transport and intracellular pH after exercise in human skeletal muscle. Intracellular pH further decreased from the value reached at the end of work showing a minimum between 25 and 45 sec and then increased back to the resting value. Inorganic phosphate showed an initial fast rate of recovery corresponding to the decreasing phase of pH, and a second phase in which a slow rate of recovery corresponded to increasing pH. The biphasic patterns of both phosphate and pH recoveries are in agreement with and support in vitro evidence that Pi transport into mitochondria is modulated by pH. 相似文献
9.
J. P. Raffin M. T. Thébault J. Y. Le Gall 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1988,158(2):223-228
Summary
31P NMR spectra were recorded from tail muscles of the prawnPalaemon serratus, at rest, after exhaustive work and during subsequent recovery. At rest, the spectra indicated concentrations of phosphoarginine and ATP in good agreement with those obtained from resting fast skeletal muscles in mammals, which are characterized by a high phosphocreatine/Pi ratio. Following exhaustive work, phosphoarginine dropped by ca. 60% and ATP by 20%, while inorganic phosphate increased by 160%. The increase in inorganic phosphate immediately after contractions and in the first minutes of recovery corresponded partially to the changes in phosphoarginine and ATP. During recovery, the decrease of inorganic phosphate balanced the resynthesized phosphoarginine which was fully replenished within 30–40 min. The position of the inorganic phosphate resonance peak was used to monitor changes in intracellular pH (pHi). The average pHi in resting tail muscles was 7.20. After stimulation it was observed to decrease by 0.22 units. The return to pre-stimulation value was not achieved within 45 min. A NMR index (ATP+Arg-P)/(ATP+Arg-P+Pi) was calculated to characterize the extent of energetic changes caused by exercise. 相似文献
10.
We used in vivo phosphorus magnetic resonance spectroscopy (31P-MRS) to study the effect of CoQ10 on the efficiency of brain and skeletal muscle mitochondrial respiration in ten patients with mitochondrial cytopathies. Before CoQ, brain [PCr] was remarkably lower in patients than in controls, while [Pi] and [ADP] were higher. Brain cytosolic free [Mg2+] and delta G of ATP hydrolysis were also abnormal in all patients. MRS also revealed abnormal mitochondrial function in the skeletal muscles of all patients, as shown by a decreased rate of PCr recovery from exercise. After six-months of treatment with CoQ (150 mg/day), all brain MRS-measurable variables as well as the rate of muscle mitochondrial respiration were remarkably improved in all patients. These in vivo findings show that treatment with CoQ in patients with mitochondrial cytopathies improves mitochondrial respiration in both brain and skeletal muscles, and are consistent with Lenaz's view that increased CoQ concentration in the mitochondrial membrane increases the efficiency of oxidative phosphorylation independently of enzyme deficit. 相似文献
11.
Luke J Haseler Alexander P Lin Russell S Richardson 《Journal of applied physiology》2004,97(3):1077-1081
Previously, it was demonstrated in exercise-trained humans that phosphocreatine (PCr) recovery is significantly altered by fraction of inspired O2 (FI(O2)), suggesting that in this population under normoxic conditions, O2 availability limits maximal oxidative rate. Haseler LJ, Hogan ML, and Richardson RS. J Appl Physiol 86: 2013-2018, 1999. To further elucidate these population-specific limitations to metabolic rate, we used 31P-magnetic resonance spectroscopy to study the exercising human gastrocnemius muscle under conditions of varied FI(O2) in sedentary subjects. To test the hypothesis that PCr recovery from submaximal exercise in sedentary subjects is not limited by O2 availability, but rather by their mitochondrial capacity, six sedentary subjects performed three bouts of 6-min steady-state submaximal plantar flexion exercise followed by 5 min of recovery while breathing three different FI(O2) (0.10, 0.21, and 1.00). PCr recovery time constants were significantly longer in hypoxia (47.0 +/- 3.2 s), but there was no difference between hyperoxia (31.8 +/- 1.9 s) and normoxia (30.0 +/- 2.1 s) (mean +/- SE). End-exercise pH was not significantly different across treatments. These results suggest that the maximal muscle oxidative rate of these sedentary subjects, unlike their exercise-trained counterparts, is limited by mitochondrial capacity and not O2 availability in normoxia. Additionally, the significant elongation of PCr recovery in these subjects in hypoxia illustrates the reliance on O2 supply at the other end of the O2 availability spectrum in both sedentary and active populations. 相似文献
12.
Uncoupling effect of nitrite during denitrification by Pseudomonas fluorescens: An in vivo (31)P-NMR study 总被引:1,自引:0,他引:1
In vivo (31)P-NMR was used to investigate the basis for the inhibition of denitrification by nitrite accumulated endogenously by Pseudomonas fluorescens ATCC 17822 (biotype II) at pH 7.0. Cells were immobilized in kappa-carrageenan to obtain high cell concentrations in the NMR tube. Acetate and nitrate in two concentration ratios were supplied as electron donor and acceptor, respectively, to achieve different levels of nitrite accumulation. During denitrification, cells were able to maintain a pH gradient of approximately 0.4 to 0.5 units, but when nitrite accumulation reached values approximating 27 mM the transmembrane DeltapH collapsed sharply. Nitrite stimulated the reduction rate of nitrate; furthermore, at nitrite concentrations below 1 mM, activation of oxygen respiratory rates was observed in cells grown under aerobic conditions. The results provide evidence for nitrite acting as a protonophore (an uncoupler that increases the proton permeability of membranes by a shuttling mechanism). (c) 1996 John Wiley & Sons, Inc. 相似文献
13.
In vivo (31)P-NMR diffusion spectroscopy of ATP and phosphocreatine in rat skeletal muscle
下载免费PDF全文

The aim of this study was to measure the diffusion of ATP and phosphocreatine (PCr) in intact rat skeletal muscle, using (31)P-NMR. The acquisition of the diffusion-sensitized spectra was optimized in terms of the signal-to-noise ratio for ATP by using a frequency-selective stimulated echo sequence in combination with adiabatic radio-frequency pulses and surface coil signal excitation and reception. Diffusion restriction was studied by measuring the apparent diffusion coefficients of ATP and PCr as a function of the diffusion time. Orientation effects were eliminated by determining the trace of the diffusion tensor. The data were fitted to a cylindrical restriction model to estimate the unbounded diffusion coefficient and the radial dimensions of the restricting compartment. The unbounded diffusion coefficients of ATP and PCr were approximately 90% of their in vitro values at 37 degrees C. The diameters of the cylindrical restriction compartment were approximately 16 and approximately 22 microm for ATP and PCr, respectively. The diameters of rat skeletal muscle fibers are known to range from 60 to 80 microm. The modelling therefore suggests that the in vivo restriction of ATP and PCr diffusion is not imposed by the sarcolemma but by other, intracellular structures with an overall cylindrical orientation. 相似文献
14.
Roussel M Bendahan D Mattei JP Le Fur Y Cozzone PJ 《Biochimica et biophysica acta》2000,1457(1-2):18-26
We have analyzed by (31)P MRS the relationship between kinetic parameters of phosphocreatine (PCr) recovery and end-of-exercise status under conditions of moderate and large acidosis induced by dynamic exercise. Thirteen healthy subjects performed muscular contractions at 0.47 Hz (low frequency, moderate exercise) and 0.85 Hz (high frequency, heavy exercise). The rate constant of PCr resynthesis (k(PCr)) varied greatly among subjects (variation coefficients: 43 vs. 57% for LF vs. HF exercises) and protocols (k(PCr) values: 1.3+/-0.5 min(-1) vs. 0.9+/-0.5 min(-1) for LF vs. HF exercises, P<0.03). The large intersubject variability can be captured into a linear relationship between k(PCr), the amount of PCr consumed ([PCr(2)]) and pH reached at the end of exercise (pH(end)) (k(PCr)=-3.3+0.7 pH(end)-0.03 [PCr(2)]; P=0.0007; r=0.61). This dual relationship illustrates that mitochondrial activity is affected by end-of-exercise metabolic status and allows reliable comparisons between control, diseased and trained muscles. In contrast to k(PCr), the initial rate of PCr recovery and the maximum oxidative capacity were always constant whatever the metabolic conditions of end-of-exercise and can then be additionally used in the identification of dysfunctions in the oxidative metabolic pathway. 相似文献
15.
1. The denervated frog sartorius muscle showed a decrease in the energy store more than that in the control. 2. In the caffeine contractures, both the denervated and the innervated muscles showed similar sequential changes in the relative concentration of phosphocreatine (PCr) to beta-adenosine triphosphate (beta-ATP) and inorganic phosphate (Pi) to beta-ATP. Instead, the intracellular pH value of the denervated muscle was lower than that of the control. 3. It is suggested that phosphate metabolism of the denervated muscle during contracture shows little difference from that of the control, nevertheless, the buffering capacity is decreased in the early stage of atrophy. 相似文献
16.
1. The presence of hypoxanthine and xanthine in the skeletal muscle of two patients with congenital xanthine oxidase deficiency (xanthinuria) was demonstrated by high-resolution mass spectrometry. 2. Evidence was obtained for the presence of a trace of hypoxanthine only in normal muscle. 3. Dry pulverized tissue was introduced directly into the mass spectrometer and preliminary chemical processing of the tissue was therefore unnecessary. 4. The criteria for the mass-spectrometric identification of hypoxanthine and xanthine in the tissue and the significance of the observations are discussed. 相似文献
17.
31P nuclear magnetic resonance (31P NMR) was used to monitor cytoplasmic and vacuolar pH values in the filamentous fungus Aspergillus niger. To obtain a homogeneous cell sample and to be able to perform long term in vivo NMR measurements A. niger mycelium was kept in a setup that allows perfusion of the cell plug within the NMR tube. Mycelial samples, however, became rapidly clogged during perfusion leading to (partial) anaerobiosis of the plug with subsequent acidification of the cytoplasm. As a result, only short-term NMR measurements (5-10 min) were possible using free mycelium. To increase and to prolong perfusion, A. niger was immobilized in Ca(2+)-alginate beads. Deteriorated spectra recorded under hypoxia could be completely restored in the presence of oxygen. With this system perfusion in the presence of citrate could be maintained for at least 18 h at much higher rates (15 ml min-1 compared with 4 ml min-1 for free mycelium). During this period 31P NMR spectra were highly invariable, indicating approximate steady-state intracellular conditions during long term measurements. Perfusion in the presence of glucose resulted in complete depletion of the vacuolar inorganic phosphate pool within 45 min and yielded a higher pH gradient over the tonoplast than when citrate was used (delta pH = 1.6 and 1.4, respectively). 相似文献
18.
19.
Xue-Qiang Wu Wen-Jing Zhu Zhi-Rong Lü Yong Xia Jun-Mo Yang Fei Zou Xiao-Yun Wang 《International journal of biological macromolecules》2009,44(2):149-155
Arginine kinase (AK; EC 2.7.3.3) is a key enzyme in the cellular energy metabolism of insects. Screening on potential effective inhibitors of AK may provide a pathway for novel, environmentally friendly insecticides. The results in this study indicated that rutin, as a noncompetitive inhibitor, interacts with AK mainly by a hydrophobic force forming an intermolecular complex with AK, which is according to the thermodynamic parameters obtained. Using a flexible docking method (AutoDock) the interaction between rutin and AK were further analyzed, which suggested in order to screen effective inhibitors, flexible active sites of AK (Ser63, Gly64, Val65, Tyr68) should be taken in account. 相似文献