首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radioionated avidin and streptavidin were characterized for their biodistribution and tissue association in Balb/c mice, in comparison to their interaction with cells in vitro. Binding of avidin to spleen and bone-marrow cells in vitro was up to 20-fold higher than that of streptavidin, but when tested in vivo avidin clearance from blood and tissues was considerably faster than that of streptavidin. Levels of avidin at 24 h after an intravenous injection were below 1% (of the injected dose/mass tissue) in most organs. Non-glycosylated avidin was similar in its biodistribution to native avidin. Native streptavidin exhibited higher and prolonged tissue association with 5-10% levels in lung, liver, spleen, kidney and blood, whereas its truncated form showed low tissue levels (1-3%) but a remarkably high affinity to the kidney (80%). Exogenous biotin did not affect streptavidin distribution in vivo but caused a 2-7-fold increase in the retention of avidin (but not non-glycodylated avidin) in some of the organs.  相似文献   

2.
A colorimetric competitive inhibition assay for avidin, streptavidin and biotin was developed. The method for avidin or streptavidin was based on the competitive binding between avidin or streptavidin and a streptavidin-enzyme conjugate for biotinylated dextrin immobilized on the surface of a microtitre plate. For biotin quantitation the competition is between free biotin and the immobilized biotin for the streptavidin-enzyme conjugate. The limits of detection which was determined as the concentration of competitor required to give 90% of maximal absorbency (100% inhibition) was approximately 20 ng/100 microl per assay for avidin and streptavidin and 0.4 pg/100 microl per assay for biotin. The methods are simple, rapid, highly sensitive and adaptable to high throughput analysis.  相似文献   

3.
Parameters and conditions of an enzyme based assay for biotin and avidin are presented. Biotinylated glucose-6-phosphate dehydrogenase when complexed with avidin becomes inactivated. Thus it was possible to construct a competitive assay system for biotin. The assay is sensitive between 100-500 ng/ml and could detect as little as 10 ng in 0.1 ml with a between run error of 2.4%. It requires a 60 min incubation at 21 degrees C and 5 min to assay. The avidin assay, based on the degree of inactivation of biotinylated-glucose-6-phosphate dehydrogenase in relation to the concentration of avidin, could detect as little as 0.25 ng in 0.1 ml or 2.5 ng/ml with an assay time of 10 min with a between run error of 3.9%. Both assays are rapid with significant improvements over other non-isotopic methods in sensitivity and comparable to radioisotopic methods in sensitivity with the added advantage of ease of method.  相似文献   

4.
The effect of biotin binding on the thermal stability of streptavidin (STV) and avidin (AVD) was evaluated using differential scanning calorimetry. Biotin binding increases the midpoint of temperature Tm of thermally induced denaturation of STV and AVD in phosphate buffer from 75 and 83 degrees C to 112 and 117 degrees C at full biotin saturation, respectively. This thermostability is the highest reported for proteins coming from either mesophilic or thermophilic organisms. In both proteins, biotin also increases the calorimetric enthalpy and the cooperativity of the unfolding. Thermal stability of STV was also evaluated in the presence of high concentrations of urea or guanidinium hydrochloride (GuHCl). In 6 M GuHCl, STV remains as a tetramer and the Tm of the STV-biotin complex is centered at 108 degrees C, a few degrees below the value obtained in phosphate buffer. On the contrary, STV under fully saturating condition remains mainly in its dimeric form in 8 M urea and the thermogram shows two endotherms. The main endotherm at a lower temperature has been ascribed to the dimeric liganded state with a Tm of 87 degrees C, and the higher temperature endotherm to the tetrameric liganded form with a Tm of 106 degrees C. As the thermostability of unliganded protein in the presence of urea is unchanged upon binding we related the extremely high thermal stability of this protein to both an increase in structural ordering and compactness with the preservation of the tetramer integrity.  相似文献   

5.
We have studied the structural elements that affect ligand exchange between the two high affinity biotin-binding proteins, egg white avidin and its bacterial analogue, streptavidin. For this purpose, we have developed a simple assay based on the antipodal behavior of the two proteins toward hydrolysis of biotinyl p-nitrophenyl ester (BNP). The assay provided the experimental basis for these studies. It was found that biotin migrates unidirectionally from streptavidin to avidin. Conversely, the biotin derivative, BNP, is transferred in the opposite direction, from avidin to streptavidin. A previous crystallographic study (Huberman, T., Eisenberg-Domovich, Y., Gitlin, G., Kulik, T., Bayer, E. A., Wilchek, M., and Livnah, O. (2001) J. Biol. Chem. 276, 32031-32039) provided insight into a plausible explanation for these results. These data revealed that the non-hydrolyzable BNP analogue, biotinyl p-nitroanilide, was almost completely sheltered in streptavidin as opposed to avidin in which the disordered conformation of a critical loop resulted in the loss of several hydrogen bonds and concomitant exposure of the analogue to the solvent. In order to determine the minimal modification of the biotin molecule required to cause the disordered loop conformation, the structures of avidin and streptavidin were determined with norbiotin, homobiotin, and a common long-chain biotin derivative, biotinyl epsilon-aminocaproic acid. Six new crystal structures of the avidin and streptavidin complexes with the latter biotin analogues and derivatives were thus elucidated. It was found that extending the biotin side chain by a single CH(2) group (i.e. homobiotin) is sufficient to result in this remarkable conformational change in the loop of avidin. These results bear significant biotechnological importance, suggesting that complexes containing biotinylated probes with streptavidin would be more stable than those with avidin. These findings should be heeded when developing new drugs based on lead compounds because it is difficult to predict the structural and conformational consequences on the resultant protein-ligand interactions.  相似文献   

6.
In this investigation, studies were conducted to determine if size exclusion HPLC could be used to assess relative association rates (on-rates) and dissociation rates (off-rates) of biotin derivatives from avidin (Av) and streptavidin (SAv). For easy detection and quantification of biotin derivatives, molecules that can be detected by UV absorbance were conjugated to biotin. Concern that conjugation of the chromophoric moieties (dyes) might affect biotin binding with Av and SAv or might interact with the HPLC column led to evaluation of 10 biotin-dye conjugates. The dyes conjugated with biotin included dansyl, cyanocobalamin (CN-Cbl), coumarin 343, Lissamine-rhodamine, fluorescein, Cascade Blue, Lucifer Yellow, Oregon Green, tetramethylrhodamine, and Alexa Fluor 594. The biotin-dye conjugates were initially evaluated to determine their peak characteristics on two different size exclusion HPLC columns. Measurement of the percent of biotin-dye conjugate bound with Av in the presence of an equal quantity of biotin provided an association rate relative to biotin. All of the biotin-dyes tested had association rates within a factor of 3x (slower) that of biotin. The relative dissociation rate of biotin-dye conjugates was assessed by challenging the biotin conjugate bound to Av or SAv with a large excess of biotin. All of the initial biotin-dye conjugates tested bound Av and SAv tightly resulting in very slow dissociation rates. From the biotin-dye conjugates studied, biotin-CN-Cbl, 6b, was selected as the best conjugate for the HPLC assay. To test the HPLC assay, an iminobiotin-CN-Cbl conjugate, 13a, and a biotin-sarcosine-CN-Cbl conjugate, 13b, were synthesized. The fact that the iminobiotin does not bind with Av at physiological pH was easily detected in the size exclusion HPLC assay. The biotin-sarcosine-CN-Cbl conjugate was expected to have a more rapid dissociation rate than the other biotin-dye conjugates. This was confirmed in that HPLC assay. Although 13b bound tightly with Av in the absence of added biotin, it was completely released within 1 h when challenged by an excess of biotin. A slower dissociation of 13b was noted with SAv. The results obtained indicate that CN-Cbl conjugates of biotin derivatives can be used to determine relative on-rates and off-rates of biotin derivatives with Av and SAv. The studies also demonstrated that the biotin-CN-Cbl conjugate, 6b, can be used as a reference compound to compare on-rates and off-rates of nonchromophoric biotin derivatives.  相似文献   

7.
Free biotin was quantitated by a competition by coating biotin-bovine serum albumin conjugate on a polystyrene microplate for binding to avidin-beta-galactosidase conjugate. The enzyme conjugate remaining on the plate surface as a result of the competition was detected by reaction with one of the following fluorogenic substrates, resorufin beta-D-galactoside and fluorescein di-beta-D-galactoside, in a fluorescence plate reader. Free biotin as little as 0.1 nmol can be routinely detected.  相似文献   

8.
UV resonance Raman (UVRR) spectroscopy is used to study the binding of biotin and 2-iminobiotin by streptavidin, and the results are compared to those previously obtained from the avidin-biotin complex and new data from the avidin-2-iminobiotin complex. UVRR difference spectroscopy using 244-nm excitation reveals changes to the tyrosine (Tyr) and tryptophan (Trp) residues of both proteins upon complex formation. Avidin has four Trp and only one Tyr residue, while streptavidin has eight Trp and six Tyr residues. The spectral changes observed in streptavidin upon the addition of biotin are similar to those observed for avidin. However, the intensity enhancements observed for the streptavidin Trp Raman bands are less than those observed with avidin. The changes observed in the streptavidin Tyr bands are similar to those observed for avidin and are assigned exclusively to the binding site Tyr 43 residue. The Trp and Tyr band changes are due to the exclusion of water and addition of biotin, resulting in a more hydrophobic environment for the binding site residues. The addition of 2-iminobiotin results in spectral changes to both the streptavidin and avidin Trp bands that are very similar to those observed upon the addition of biotin in each protein. The changes to the Tyr bands are very different than those observed with the addition of biotin, and similar spectral changes are observed in both streptavidin and avidin. This is attributable to hydrogen bond changes to the binding site Tyr residue in each protein, and the similar Tyr difference features in both proteins supports the exclusive assignment of the streptavidin Tyr difference features to the binding site Tyr 43.  相似文献   

9.
The reversibility of the S-adenosylhomocysteine hydrolase reaction allows both nonradiolabeled S-adenosyl-l-homocysteine and l-homocysteine to serve as l-homocysteine donors for the synthesis of radiolabeled S-adenosyl-l-homocysteine from radiolabeled adenosine. Using high specific activity, radiolabeled adenosine, and high-performance liquid chromatography to separate products and reactants, as little as 0.1 pmol of l-homocysteine donor can be detected by its ability to be converted to radiolabeled S-adenosyl-l-homocysteine. Reduction of samples with dithiothreitol during the enzymatic reaction allows l-homocystine and mixed disulfides of l-homocysteine to be assayed as well. S-Adenosyl-l-homocysteine can be distinguished from other l-homocysteine donors by assaying samples before and after degradation of the former with the nonspecific adenosine deaminase from Aspergillus oryzae. A less sensitive version of the assay employs thin-layer chromatography in place of high-performance liquid chromatography, and is useful for the assay of l-homocysteine and its disulfides in quantities of 25 pmol or more.  相似文献   

10.
Bioaffinity sensors need to be rapid, specific, and highly sensitive. To realize these features, electrodes that can elicit high electrochemical performance are necessary. In this study, we developed nanorod array electrode and performed cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) experiments to study the interfacial properties of the nanorod array electrode with Fe(CN)(6)(3-/4-) as the redox molecules. Results showed that both the CV and EIS measurements captured very well the resistive and capacitive changes due to the adsorption of functionalizing molecules and the coupling between avidin and biotin. The EIS measurements were more sensitive in discriminating small changes caused by the surface adsorption of various molecules. The use of avidin-functionalized gold nanorod modified electrodes had led to much increased detection sensitivity along with a detection-limit as low as 1 ng/mL of biotin.  相似文献   

11.
A new, highly sensitive, specific assay for dopamine-β-hydroxylase (DBH) activity in human serum is described. Tyramine is used as a substrate; the product of the enzymatic hydroxylation, octopamine, is converted by reacting with 1-dimethylaminonaphthalene-5-sulfonyl-chloride (Dns-Cl) to a fluorescent product, which is extracted from the reaction mixture and purified from the extract by thin-layer chromatography (tlc). The fluorescence of the dansylated octopamine is measured in situ on the tlc plate using a chromatogram-spectrofluorometer. This one-step enzyme reaction can be performed at optimum pH and substrate concentration. As little as 8 ng of octopamine can be determined accurately; the response is linear up to more than 400 ng of octopamine. A comparison with the radioenzymatic assay (Weinshilboum, R., and Axelrod, J. (1971) Circ. Res.28, 307–315) shows an approximately twofold increase in the enzymatic activity measured. Kinetic studies of human sera with high and low DBH activity gave a Km value of 3.1 × 10?3m. The method is successfully being used for the functional characterization of the enzyme and genetic studies (Herschel, M., in preparation).  相似文献   

12.
The screening of ligands against proteins plays important role in drug discovery and biological research. Using a dye labelled Streptavidin binding aptamer (SBA) as a competitive reporter probe, we found that adenosine bound to streptavidin specifically. Fluorescence spectral analysis showed that adenosine bound to both avidin and streptavidin with the Kds in the range of 0.1–0.2 mM, and these bindings can be blocked by biotin. Although streptavidin and avidin are well-known and widely used in bioanalysis, their biological role is still a riddle so far. Since adenosine is a ubiquitous physiological regulator present in cells, our finding provides new clues for the understanding of the functions of both proteins.  相似文献   

13.
A rapid and sensitive method was developed for the quantitative determination of alpha-tocopherol in tissues and plasma of rats and mice. Tissue and plasma were extracted in acetone and chromatographed on a reverse-phase C18 column with 2% water in methanol. Fluorescence and ultraviolet detection were used for tissue and plasma alpha-tocopherol levels, respectively. Extraction of tissues and plasma was found to be more complete in acetone than in other solvent systems analyzed. The average recovery of alpha-tocopherol added to tissue samples was 97%. As little as 0.1 g of tissue or 0.1 ml plasma can be accurately used for analysis. The method is sensitive to 0.05 micrograms alpha-tocopherol/g tissue.  相似文献   

14.
The equilibrium binding constants and stoichiometries between PEGylated biotins and avidin have been studied for a range of PEGylated biotin molecular weights. These studies show that as the molecular weight of PEG (polyethylene glycol) increases over the range 588, 3400, and 5000 g/mol, the equilibrium dissociation constants of PEGylated biotins with avidin increase to approximately 10 (-8) M compared with 10 (-15) M for the biotin-avidin complex. The stoichiometries of PEGylated biotins with avidin are 4:1 for 588 and 3400 g/mol PEG and 1:1 for 5000 g/mol PEG. The data demonstrate that the equilibrium binding constant and the stoichiometry of the avidin-biotin-PEG complex system can be adjusted by the length of PEG chains. This approach may be used with PEGylated biotin analogues for pretargeting in drug delivery, such as a biotin-PEGylated enzyme for converting an inactive prodrug into a cytotoxin. When a PEG chain is chosen as an appropriate spacer, the length of the PEG chain must be considered because PEG can block the binding sites on avidin.  相似文献   

15.
The previously reported method for the estimation of biotinidase (EC 3.5.1.12) is an endpoint colorimetric assay based on the hydrolysis of biotinyl-4-aminobenzoate, followed by diazotization, and is not suitable for our studies of biotinidase. A fluorimetric rate assay of biotinidase which uses a newly synthesized derivative biotinyl-6-aminoquinoline is described here.  相似文献   

16.
17.
The high affinity of biotin for streptavidin has made this pair of molecules very useful for in vivo applications. To optimize reagents for one potential in vivo application, antibody-based pretargeting of cancer, we have prepared a number of new biotin and streptavidin derivatives. The derivatives developed include new radiolabeled biotin reagents, new protein biotinylation reagents, and new biotin multimers for cross-linking and/or polymerization of streptavidin. We have also modified streptavidin by site-directed mutation and chemical modification to improve its in vivo characteristics, and have developed new reagents for cross-linking antibody fragments with streptavidin. A brief overview of these new reagents is provided.  相似文献   

18.
An investigation was conducted to determine the affect of structural variation of biotin conjugates on their dissociation rates from Av and SAv. This information was sought to help identify optimal biotin derivatives for in vivo applications. Fifteen biotin derivatives were conjugated with a cyanocobalamin (CN-Cbl) derivative for evaluation of their "relative" dissociation rates by size exclusion HPLC analysis. Two biotin-CN-Cbl conjugates, one containing unaltered biotin and the other containing iminobiotin, were prepared as reference compounds for comparison purposes. The first structural variations studied involved modification of the biotinamide bond with a N-methyl moiety (i.e., sarcosine conjugate), lengthening the valeric acid side chain by a methylene unit (i.e., homobiotin), and replacing the biotinamide bond with thiourea bonds in two conjugates. The rate of dissociation of the biotin-CN-Cbl derivative from Av and SAv was significantly increased for biotin derivatives containing those structural features. Nine additional biotin conjugates were obtained by coupling amino acids or functional group protected amino acids to the biotin moiety. In the conjugates, the biotin moiety and biotinamide bond were not altered, but substituents of various sizes were introduced alpha to the biotinamide bond. The results obtained from HPLC analyses indicated that the rate of dissociation from Av or SAv was not affected by small substituents alpha to the biotinamide (e.g., methyl, hydroxymethyl, and carboxylate groups), but was significantly increased when larger functional groups were present. On the basis of the results obtained, it appears that biotin conjugates which retain an unmodified biotin moiety and have a linker molecule conjugated to it that has a small functional group (e.g., hydroxymethylene or carboxylate) alpha to the biotinamide bond are excellent candidates for in vivo applications. These structural features are obtained in the biotin amino acid conjugates: biotin-serine, biotin-aspartate, biotin-lysine, and biotin-cysteine. Importantly, these biotin derivatives can be readily conjugated with other molecules for specific in vivo applications. In our studies, these derivatives will be used in the design of new biotin conjugates to carry radionuclides for cancer therapy using the pretargeting approach.  相似文献   

19.
[[125I]Tyr8]Bradykinin is degraded by angiotensin-converting enzyme to [125I]Tyr-Arg. The reaction product can be separated completely and recovered nearly quantitatively from unchanged substrate by cation-exchange chromatography. Thus it is possible to use [[125I]Tyr8]bradykinin at high specific radioactivity (about 400Ci/mmol) to measure the small quantities of angiotensin-converting enzyme encountered in small-scale cultures of pulmonary endothelial cells.  相似文献   

20.
Cofactor biosynthetic pathways represent a rich source of potential antibiotic targets. The second step in biotin biosynthesis is performed by BioA, a pyridoxal 5′-phosphate (PLP)-dependent enzyme. This enzyme has been confirmed as a candidate target in Mycobacterium tuberculosis; however, the current bioassay used to measure BioA activity is cumbersome and low throughput. Here we describe the design, development, and optimization of a continuous coupled fluorescence displacement assay to measure BioA activity. In this coupled assay, BioD converts the product of the BioA-catalyzed reaction into dethiobiotin, which is subsequently detected by displacement of a fluorescently labeled dethiobiotin probe from streptavidin. The assay was further adapted to a high-throughput screening format and validated against the LOPAC1280 library.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号