首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Although membranes are often viewed as barriers to diffusing particles, in many cases their presence does not slow down diffusion. Investigations of the transit time (mean diffusion time) for cases where the source and the target of diffusing particles are separated by various arrangements of membranes reveal the following facts: (i) The transit time is composed of the sum of the times to diffuse each of the membrane and aqueous regions separately and terms representing the time spent at the vicinity of the interfaces between these regions. (ii) In cases of one dimensional diffusion between aqueous and membranal phases, the transit time is governed by the parameter whereD m andD w are the diffusion coefficients in the membrane and water, respectively, and is the membrane/water partition coefficient of the particles. While the former ratio depends mostly on the viscosities of the two phases, the latter parameter is very strongly dependent on the identity of the particles. The diffusion from water to the membrane is faster than from the membrane to water whenever 1$$ " align="middle" border="0"> . The opposite is true when this parameter is smaller than 1. (iii) In case of one dimensional transmembranal diffusion, the transit time shows a minimum when wherel w1 andl w2 are the net diffusion distances in the aqueous phases on both sides of the membrane. In this case, if the diffusion proceeds through pores in the membrane, represents the fraction of membrane area that is occupied by the pores.The transit times for three dimensional diffusion into and from a spherical cell are also presented in a simple form. In addition, some of the relations between transit times and other measurable time parameters, such as the course of the decay of gradients and the time lag to establish steady states, are discussed briefly.The conclusions emerging from this analysis, together with the simple expressions for the transit times can make these investigation useful for the understanding of diffusion in systems containing natural or artificial membranes.  相似文献   

2.
The liver is responsible for the clearance and metabolism of unconjugated bilirubin, the hydrophobic end-product of heme catabolism. Although several putative bilirubin transporters have been described, it has been alternatively proposed that bilirubin enters the hepatocyte by passive diffusion through the plasma membrane. In order to elucidate the mechanism of bilirubin uptake, we measured the rate of bilirubin transmembrane diffusion (flip-flop) using stopped-flow fluorescence techniques. Unconjugated bilirubin rapidly diffuses through model phosphatidylcholine vesicles, with a first-order rate constant of 5.3 s-1 (t(1)/(2) = 130 ms). The flip-flop rate is independent of membrane cholesterol content, phospholipid acyl saturation, and lipid packing, consistent with thermodynamic analyses demonstrating minimal steric constraint to bilirubin transmembrane diffusion. The coincident decrease in pH of the entrapped vesicle volume supports a mechanism whereby the bilirubin molecule crosses the lipid bilayer as the uncharged diacid. Transport of bilirubin by native rat hepatocyte membranes exhibits kinetics comparable with that in model vesicles, suggesting that unconjugated bilirubin crosses cellular membranes by passive diffusion through the hydrophobic lipid core. In contrast, there is no demonstrable flip-flop of bilirubin diglucuronide or bilirubin ditaurate in phospholipid vesicles, yet these compounds rapidly traverse isolated rat hepatocyte membranes, confirming the presence of a facilitated uptake system(s) for hydrophilic bilirubin conjugates.  相似文献   

3.
4.
Tetraphenylborate conductance through lipid bilayer membranes   总被引:3,自引:0,他引:3  
  相似文献   

5.
Previous interpretations of the kinetics of transport of hydrophobic ions through membranes have been based on one of three limiting assumptions. Either diffusion in the aqueous phase was taken to be rapid, or ionic motion was constrained to the membrane or a steady state was presumed to be established within the membrane. We present a general treatment of the coupled diffusion process through both the aqueous phase and the membrane; our theory contains the previous results as limiting cases. It is applied to voltage jump-current relaxation experiments on black lipid membranes in the presence of dipicrylamine or sodium tetraphenylborate. We have attempted to establish the rate of desorption from the membrane. For the system phosphatidylserine/tetraphenylborate, the rate of desorption and the rate of translocation were found to be comparable.  相似文献   

6.
We showed that the investigation of the selective association of phospholipids might contribute to the insight of the flip-flop diffusion processes. The process of selective association was studied quantitatively by testing the association probabilities for both parallel and anti-parallel orientations of the polar headgroups. The model of double chain binary mixture confirms a high capacity of phospholipids for self-association in parallel configuration of the electric dipole moments whether the cross-sectional area of the polar headgroups are in an usual range of 25–55 Å2. It is demonstrated that the aggregation of a class of phospholipids from a binary mixture is strongly dependent on the dipole-dipole interaction between the same phospholipids and is modulated by the magnitude of the electric dipole moment of the other phospholipids from that binary mixture. There are a great number of mechanisms involved in the transbilayer movement of phospholipids. We referred here only to the passive transport of lipids from one monolayer to the other. The flip-flop mechanisms raised in this paper are the breakdown of bilayer due to the increase of the packing density and the inversion of the coupled phospholipids from the opposite monolayers of the same bilayer. Thus, the pair formation promoting a drop in occupied volume decreases the packing pressure in the respective monolayer and consequently triggers a flip-flop into the other direction since the packing pressure in the other monolayer has not dropped. According to the present model for the binary mixtures of double-chain lipids, the rate of the flip-flop diffusion decreased by increasing the number of the methylene groups added to the acyl chain. This dependence may be perturbed whether the phospholipids possesses a very high cross-section area of the polar headgroups (a > 55 Å2). We think that the selective association of phospholipids is neither exclusively, nor only involved in promoting the transbilayer diffusion of phospholipids. Most probably, the selective association determines some phospholipid domains that attract certain particular proteins so that it can modulate the protein activity.  相似文献   

7.
The Saffman-Delbrück approximation is commonly used in biophysics to relate the membrane inclusion size to its translational diffusion coefficient and membrane viscosity. However, this approximation has a restricted validity range, and its application to determination of inclusion sizes from diffusion data may in certain cases lead to unreliable results. At the same time, the model by Hughes et al. (Hughes, B. D., B. A. Pailthorpe, and C. R. White. 1981. J. Fluid Mech. 110:349-372.), providing diffusion coefficients of membrane inclusions for arbitrary inclusion sizes and viscosities of the membrane and surrounding fluids, involves substantial computational efforts, which prevents its use in practical data analysis. We develop a simple and accurate analytical approximation to the Hughes et al. model and demonstrate its performance and utility by applying it to the recently published experimental data on translational diffusion of micrometer-sized membrane domains.  相似文献   

8.
Monocarboxylic acid permeation through lipid bilayer membranes   总被引:1,自引:0,他引:1  
Summary The membrane permeability coefficients for the homologous monocarboxylic acids, formic through hexanoic, as well as benzoic and salicylic, were determined for egg phosphatidylcholine-decane planar bilayer membranes. The permeabilities of formic, acetic and propionic acid were also determined for solvent-free phosphatidylethanolamine bilayers. Permeability coefficients were calculated from tracer fluxes measured under otherwise symmetrical conditions, and precautions were taken to ensure that the values were not underestimated due to unstirred layer effects. The relation between the nonionic (HA) permeability (P m ) and the hexadecane/water partition coefficient (K p ) was: log m =0.90 log Kp+0.87 (correlation coefficient=0.996). Formic acid was excluded from the analysis because its permeability was sixfold higher than predicted by the other acids. The permeabilities for solvent-free membranes were similar to those for decanecontaining membranes. The exceptionally high permeability of formic acid and the high correlation of the other permeabilities to the hexadecane/water partition coefficient is a pattern that conforms with other nonelectrolyte permeabilities through bilayers. Similarly, the mean incremental free energy change per methylene group (G-CH2-) was –764 cal mol–1, similar to other homologous solutes in other membrane systems. However, much less negative G values (–120, to –400 cal mol–1) were previously reported for fatty acids permeating bilayers and biological membranes. These values are due primarily to unstirred layer effects, metabolism and binding to membranes and other cell components.  相似文献   

9.
Na+ efflux from liposomes (small unilamellar vesicles, SUV) of various compositions was studied, using 22Na+ and 3H-labelled stachyose in simultaneous dual isotope measurements, stachyose being used as a measure of liposome disintegration. Dialysis was utilised to separate liposomes from extra-liposomal activity.Liposomes were made from egg lecithin and sphingomyelin and from mixtures of egg lecithin, sphingomyelin, cerebroside, sulphatide and cholesterol. All mixtures produced more leaky and less stable SUVs than pure lecithin and pure sphingomyelin. The incorporation of cerebroside is significantly smaller than that of the phospholipids including sphingomyelin. It was found that membranes containing cerebroside had a significantly higher Na+ permeability than membranes without cerebroside.  相似文献   

10.
A pressure-induced decrease of the lateral diffusion in pure and cholesterol containing phosphatidylcholine bilayer membranes has been determined by the excimer formation technique using pyrene as probe molecule. The experimental results at pressures up to 150 bars are described satisfactorily by the free volume theory of a molecular transport in liquids. A pressure increase of extrapolated 575 bars decreases the lateral diffusion of lipids by a factor of two in pure dipalmitoylphosphatidylcholine membranes. Higher pressures are necessary to induce the same effect in cholesterol containing membranes. This result is interpreted by the condensing effect of cholesterol in fluid bilayer membranes.  相似文献   

11.
《Biophysical journal》2022,121(24):4810-4818
DNA nanotechnology facilitates the synthesis of biomimetic models for studying biological systems. This work uses lipid bilayers as platforms for two-dimensional single-particle tracking of the dynamics of DNA nanostructures. Three different DNA origami structures adhere to the membrane through hybridization with cholesterol-modified strands. Their two-dimensional diffusion coefficient is modulated by changing the concentration of monovalent and divalent salts and the number of anchors. In addition, the diffusion coefficient is tuned by targeting cholesterol-modified anchor strands with strand-displacement reactions. We demonstrate a responsive system with changing diffusivity by selectively displacing membrane-bound anchor strands. We also show the programmed release of origami structures from the lipid membranes.  相似文献   

12.
Summary Diffusion of small nonelectrolytes through planar lipid bilayer membranes (egg phosphatidylcholine-decane) was examined by correlating the permeability coefficients of 22 solutes with their partition coefficients between water and four organic solvents. High correlations were observed with hexadecane and olive oil (r=0.95 and 0.93), but not octanol and ether (r=0.75 and 0.74). Permeabilities of the seven smallest molecules (mol wt <50) (water, hydrofluoric acid, hydrochloric acid, ammonia, methylamine, formic acid and formamide) were 2- to 15-fold higher than the values predicted by the permeabilities of the larger molecules (50相似文献   

13.
Summary A simple method of measuring proton/hydroxide conductance (G H/OH) through planar lipid bilayer membranes is described. First the total conductance (G m ) is measured electrically. Then the H+/OH transference number (T H/OH) is estimated from the diffusion potential (V m ) produced by a transmembrane pH gradient. The pH gradient is produced by a pair of buffered solutions which have identical concentrations of all ions except H+ and OH. Thus,V m is due entirely to H+/OH diffusion andG H/OH can be calculated from the relations,V m =T H/OH E H/OH andG H/OH=T H/OH G m , whereE H/OH is the equilibrium potential for H+ and OH. In bilayers made from bacterial phosphatidylethanolamine (PE) inn-decane,G H/OH is nearly independent of pH, ranging from about 10–9 S cm–2 at pH 1.6 to 10–8 S cm–2 at pH 10.5. BecauseG H/OH is nearly independent of pH, the calculated permeability coefficients to H+ and/or OH are extremely pH dependent, which partly explains the wide range of values reported for phospholipid vesicles and biological membranes.G H/OH appears to be independent of the membrane surface charge, because titrating either the phosphate or the amino group of PE has little effect onG H/OH.G H/OH is reduced about 10-fold when the water activity is reduced 33% by replacement with glycerol. Although the mechanism of H+/OH conductance is not known, the relation betweenG H/OH and water activity suggests that several water molecules are involved in the H+/OH transport process.  相似文献   

14.
An exact treatment of the current noise spectrum produced by transport of hydrophobic ions through membranes is presented, including the coupling of the diffusion processes through both the aqueous phase and the membrane. Both the equilibrium and the steady state noise spectra are computed. The theory contains previous results as limiting cases. The structure of the spectra is discussed with emphasis upon how noise measurements can be used to estimate kinetic parameters, especially the rate of desorption from the membrane. For this restricted model there is no low frequency divergence in the non-equilibrium current noise, i.e., for the model treated there is no 1/f noise.  相似文献   

15.
Diffusion chambers assembled with Millipore filters previously soaked in water are penetrable by peritoneal exudate cells. Those constructed with dry Millipore filters of porosity 0.1 and 0.22 μm are not penetrable by such cells, but they become penetrable when pore size reaches 0.3 μm.  相似文献   

16.
The longitudinal diffusion of a homologous series of monoamides through lecithin-water lamellar phases with aqueous channel widths of 16–27 Å has been studied. The diffusion coefficients relative to water of the hydrophilic amides, formamide and acetamide, depend logarithmically on solute molar volume, as previously demonstrated in human red cells. Aqueous diffusion of amides in red-cell membranes is similar to that in a lecithin-water phase of aqueous channel width less than 16 Å, the smallest channel width used. Partition coefficients of the lipophilic amides, valeramide and isovaleramide, between lecithin vesicles and water are 1.64 and 1.15 at 20 °C. These data enabled us to compute a valeramide diffusion coefficient of 6.5 · 10−7cm2 · s−1 at 20 °C in the lipid region of a lamellar phase containing 30% water about one order of magnitude greater than the diffusion coefficient of spin-labelled analogs of phosphatidylcholine. The discrimination between the permeability coefficients of valeramide and isovaleramide is more than twice as great in the human red cell as between lipid diffusion coefficients in a phase containing 8% water. This suggests that the lipid region of the human red cell is more highly organized than lipid in the lecithin-water lamellar phase.  相似文献   

17.
18.
19.
Free glycine was shown to diffuse very slowly across synthetic bimolecular lipid membranes, whereas several N-substituted derivatives of glycine were found to penetrate the membranes more readily. Pyridoxal, formaldehyde and acetaldehyde were shown to enhance the diffusion of glycine across the membranes, presumably the result of imine formation between the aldehyde and the α-amino group of glycine. Several N-substituted glycines were synthesized and their rates of efflux from liposomes were found to be related to their water-chloroform partition coefficients. This is the first demonstration of carrier-mediated diffusion of amino acids across bimolecular lipid membrane.  相似文献   

20.
Cadmium and thallous ion permeabilities through lipid bilayer membranes   总被引:3,自引:0,他引:3  
Cadmium (Cd2+) and thallous ion (Tl+) permeabilities were measured in planar (Mueller-Rudin) lipid bilayer membranes made from diphytanoylphosphatidylcholine in decane. Permeabilities of the electroneutral Cl- complexes, measured with tracers (109Cd and 204Tl), were about 10(-8) cm X s-1 for CdCl2 and 10(-6) cm X s-1 for TlCl. Electrical conductance measurements showed that permeabilities to Cd2+ and Tl+ were approx. 10(-11) cm X s-1, similar to the Na+ permeability. The low permeabilities to both Cd2+ and CdCl2 are consistent with biological studies which suggest that Cd transport and toxicity are protein mediated and correlated with Cd2+, not CdCl2, concentration. However, the low bilayer permeability to Tl+ raises questions about recent reports that Tl+ is a lipid permeable cation in biological membranes and liposomes. An alternative explanation for the lipid permeable behavior of Tl+ is presented, based on the diffusion of TlCl and other complexes of Tl+ with inorganic and organic anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号