首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa secretes a fluorescent siderophore, pyoverdine, when grown under iron-deficient conditions. Pyoverdine consists of a chromophoric group bound to a partly cyclic octapeptide. As a step toward understanding the molecular events involved in pyoverdine synthesis, we have sequenced a gene, pvdD, required for this process. The gene encodes a 2,448-residue protein, PvdD, which has a predicted molecular mass of 273,061 Da and contains two highly similar domains of about 1,000 amino acids each. The protein is similar to peptide synthetases from a range of bacterial and fungal species, indicating that synthesis of the peptide moiety of pyoverdine proceeds by a nonribosomal mechanism. The pvdD gene is adjacent to a gene, fpvA, which encodes an outer membrane receptor protein required for uptake of ferripyoverdine.  相似文献   

2.
Pyoverdine is a fluorescent nonribosomal peptide siderophore made by fluorescent pseudomonads. The Pseudomonas aeruginosa nonribosomal peptide synthetase (NRPS) PvdD contains two modules that each incorporate an l-threonine residue at the C-terminal end of pyoverdine. In an attempt to generate modified pyoverdine peptides, we substituted alternative-substrate-specifying adenylation (A) and peptide bond-catalyzing condensation (C) domains into the second module of PvdD. When just the A domain was substituted, the resulting strains produced only wild-type pyoverdine—at high levels if the introduced A domain specified threonine or at trace levels otherwise. The high levels of pyoverdine synthesis observed whenever the introduced A domain specified threonine indicated that these nonnative A domains were able to communicate effectively with the PvdD C domain. Moreover, the unexpected observation that non-threonine-specifying A domains nevertheless incorporated threonine into pyoverdine suggests that the native PvdD C domain exhibited stronger selectivity than these A domains for the incorporated amino acid substrate (i.e., misactivation of a threonine residue by the introduced A domains was more frequent than misincorporation of a nonthreonine residue by the PvdD C domain). In contrast, substitution of both the C and A domains of PvdD generated high yields of rationally modified pyoverdines in two instances, these pyoverdines having either a lysine or a serine residue in place of the terminal threonine. However, C-A domain substitution more commonly yielded a truncated peptide product, likely due to stalling of synthesis on a nonfunctional recombinant NRPS template.  相似文献   

3.
Novel putative pyoverdine synthetase pvdIJK genes were found upstream of pvdD in the 6.2-Mb chromosome of Pseudomonas aerugilosa strain PAO1. These genes formed a locus implicated in pyoverdine biosynthesis. Sequence analysis showed that the product of these genes shared 43%, 60% and 57% identity with PvdD. PvdIJK are thought to be implicated in synthesis of pyoverdine, a siderophore chelating Fe3+. A pvdI mutant was obtained by gene disruption mutagenesis and confirmed by Southern hybridization. The pvdl mutant produced gave no significant growth on solid media supplemented with the iron chelator 2,2-dipyridyl; while the PvdI- phenotype abolished pyoverdine fluorescence. The role of PvdI in pathogenicity was tested by measuring the in vivo growth of P. aeruginosa wild-type and mutant strains in a chronic lung infection rat model, and by measuring the competitive infectivity index into a neutropenic mice model. The data obtained confirmed the importance of PvdI in virulence and iron uptake.  相似文献   

4.
Alignment of the Pseudomonas aeruginosa ferric pyoverdine receptor, FpvA, with similar ferric-siderophore receptors revealed that the mature protein carries an extension of ca. 70 amino acids at its N terminus, an extension shared by the ferric pseudobactin receptors of P. putida. Deletion of fpvA from the chromosome of P. aeruginosa reduced pyoverdine production in this organism, as a result of a decline in expression of genes (e.g., pvdD) associated with the biosynthesis of the pyoverdine peptide moiety. Wild-type fpvA restored pvd expression in the mutant, thereby complementing its pyoverdine deficiency, although a deletion derivative of fpvA encoding a receptor lacking the N terminus of the mature protein did not. The truncated receptor was, however, functional in pyoverdine-mediated iron uptake, as evidenced by its ability to promote pyoverdine-dependent growth in an iron-restricted medium. These data are consistent with the idea that the N-terminal extension plays a role in FpvA-mediated pyoverdine biosynthesis in P. aeruginosa.  相似文献   

5.
6.
The aminoacyl-tRNA synthetases covalently link transfer RNAs to their cognate amino acids. Some of the tRNA synthetases have evolved editing mechanisms to ensure fidelity in this first step of protein synthesis. The amino acid editing site for leucyl- (LeuRS) and isoleucyl- (IleRS) tRNA synthetases reside within homologous CP1 domains. In each case, a threonine-rich peptide and a second conserved GTG region that are separated by about 100 amino acids comprise parts of the hydrolytic editing site. While a number of sites are conserved between these two enzymes and likely confer a commonality to the mechanisms, some positions are idiosyncratic to LeuRS or IleRS. Herein, we provide evidence that a conserved arginine and threonine at respective sites in LeuRS and IleRS diverged to confer amino acid substrate recognition. This site complements other sites in the amino acid binding pocket of the editing active site of Escherichia coli LeuRS, including Thr252 and Val338, which collectively fine-tune amino acid specificity to confer fidelity.  相似文献   

7.
Many bacteria use nonribosomal peptide synthetase (NRPS) proteins to produce peptide antibiotics and siderophores. The catalytic domains of the NRPS proteins are usually linked in large multidomain proteins. Often, additional proteins are coexpressed with NRPS proteins that modify the NRPS peptide products, ensure the availability of substrate building blocks, or play a role in the import or export of the NRPS product. Many NRPS clusters include a small protein of approximately 80 amino acids with homology to the MbtH protein of mycobactin synthesis in Mycobacteria tuberculosis; no function has been assigned to these proteins. Pseudomonas aeruginosa utilizes an NRPS cluster to synthesize the siderophore pyoverdine. The pyoverdine peptide contains a dihydroxyquinoline-based chromophore, as well as two formyl-N-hydroxyornithine residues, which are involved in iron binding. The pyoverdine cluster contains four modular NRPS enzymes and 10-15 additional proteins that are essential for pyoverdine production. Coexpressed with the pyoverdine synthetic enzymes is a 72-amino acid MbtH-like family member designated PA2412. We have determined the three-dimensional structure of the PA2412 protein and describe here the structure and the location of conserved regions. Additionally, we have further analyzed a deletion mutant of the PA2412 protein for growth and pyoverdine production. Our results demonstrate that PA2412 is necessary for the production or secretion of pyoverdine at normal levels. The PA2412 deletion strain is able to use exogenously produced pyoverdine, showing that there is no defect in the uptake or utilization of the iron-pyoverdine complex.  相似文献   

8.
The correct aminoacylation of tRNA with the proper aminoacid by aminoacyl-tRNA synthetase is one of the key reactions which determines the overall high fidelity of protein biosynthesis. The initial selection of the amino acid is achieved in the active centre of the synthetase at the activation step due to differences in the side chains binding energies of specific substrate and the competing amino acids present in cell. If, nevertheless, the activation of amino acids structurally similar to the cognate one does proceed, additional mechanisms of correction which are based on the decomposition of unstable noncognate (intermediate or final) product of the tRNA aminoacylation reaction, by synthetase are switched on. In this review the literature on the specificity of aminoacyl-tRNA synthetases at amino acid activation step is analyzed along with the proofreading mechanisms which allow the elimination of the errors, leading to so called superspecifity of aminoacyl-tRNA synthetases.  相似文献   

9.
Syringopeptin is a necrosis-inducing phytotoxin, composed of 22 amino acids attached to a 3-hydroxy fatty acid tail. Syringopeptin, produced by Pseudomonas syringae pv. syringae, functions as a virulence determinant in the plant-pathogen interaction. A 73,800-bp DNA region was sequenced, and analysis identified three large open reading frames, sypA, sypB, and sypC, that are 16.1, 16.3, and 40.6 kb in size. Sequence analysis of the putative SypA, SypB, and SypC sequences determined that they are homologous to peptide synthetases, containing five, five, and twelve amino acid activation modules, respectively. Each module exhibited characteristic domains for condensation, aminoacyl adenylation, and thiolation. Within the aminoacyl adenylation domain is a region responsible for substrate specificity. Phylogenetic analysis of the substrate-binding pockets resulted in clustering of the 22 syringopeptin modules into nine groups. This clustering reflects the substrate amino acids predicted to be recognized by each of the respective modules based on placement of the syringopeptin NRPS (nonribosomal peptide synthetase) system in the linear (type A) group. Finally, SypC contains two C-terminal thioesterase domains predicted to catalyze the release of syringopeptin from the synthetase and peptide cyclization to form the lactone ring. The syringopeptin synthetases, which carry 22 NRPS modules, represent the largest linear NRPS system described for a prokaryote.  相似文献   

10.
The ataxia telangiectasia mutated (ATM) gene encodes a serine/threonine protein kinase that plays a critical role in genomic surveillance and development. Here, we use a peptide library approach to define the in vitro substrate specificity of ATM kinase activity. The peptide library analysis identified an optimal sequence with a central core motif of LSQE that is preferentially phosphorylated by ATM. The contributions of the amino acids surrounding serine in the LSQE motif were assessed by utilizing specific peptide libraries or individual peptide substrates. All amino acids comprising the LSQE sequence were critical for maximum peptide substrate suitability for ATM. The DNA-dependent protein kinase (DNA-PK), a Ser/Thr kinase related to ATM and important in DNA repair, was compared with ATM in terms of peptide substrate selectivity. DNA-PK was found to be unique in its preference of neighboring amino acids to the phosphorylated serine. Peptide library analyses defined a preferred amino acid motif for ATM that permits clear distinctions between ATM and DNA-PK kinase activity. Data base searches using the library-derived ATM sequence identified previously characterized substrates of ATM, as well as novel candidate substrate targets that may function downstream in ATM-directed signaling pathways.  相似文献   

11.
A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK-1. The CK-2 specific phosphorylation site was localized in the 140 C-terminal amino acids using a recombinant trpE-C-terminal fusion protein. In a similar experiment, the 58 N-terminal amino acids expressed as a recombinant trpE-fusion protein were not phosphorylated. Phosphorylation of a synthetic peptide corresponding to amino acids 464-476 of EBNA-2 as a substrate led to the incorporation of 0.69 mol phosphate/mol peptide indicating that only one of three potential phosphorylation sites within the peptide was modified. The most likely amino acid residues for phosphorylation by CK-2 are Ser469 and Ser470.  相似文献   

12.
All living cells must conduct protein synthesis with a high degree of accuracy maintained in the transmission and flow of information from gene to finished protein product. One crucial "quality control" point in maintaining a high level of accuracy is the selectivity by which aminoacyl-tRNA synthetases furnish correctly activated amino acids, attached to tRNA species, as the building blocks for growing protein chains. During selection of amino acids, synthetases very often have to distinguish the cognate substrate from a homolog having just one fewer methyl group in its structure. The binding energy of a methyl group is estimated to contribute only a factor of 100 to the specificity of binding, yet synthetases distinguish such closely related amino acids with a discrimination factor of 10,000 to 100,000. Examples of this include methionine versus homocysteine, isoleucine versus valine, alanine versus glycine, and threonine versus serine. Many investigators have demonstrated in vitro the ability of certain aminoacyl-tRNA synthetases to edit, that is, correct or prevent incorrect attachment of amino acids to tRNA molecules. Several major editing pathways are now established from in vitro data. Further, at least some aminoacyl-tRNA synthetases have recently been shown to carry out the editing function in vivo. Editing has been demonstrated to occur in both Escherichia coli and Saccharomyces cerevisiae. Significant energy is expended by the cell for editing of misactivated amino acids, which can be reflected in the growth rate. Because of this, cellular levels of aminoacyl-tRNA synthetases, as well as amino acid biosynthetic pathways which yield competing substrates for protein synthesis, must be carefully regulated to prevent excessive editing. High-level expression of recombinant proteins imposes a strain on the biosynthetic capacity of the cell which frequently results in misincorporation of abnormal or wrong amino acids owing in part to limited editing by synthetases. Unbalanced amino acid pools associated with some genetic disorders in humans may also lead to errors in tRNA aminoacylation. The availability of X-ray crystallographic structures of some synthetases, combined with site-directed mutagenesis, allows insights into molecular details of the extraordinary selectivity of synthetases, including the editing function.  相似文献   

13.
Plant 4-coumarate:coenzyme A ligases, acyl-CoA ligases, peptide synthetases, and firefly luciferases are grouped in one family of AMP-binding proteins. These enzymes do not only use a common reaction mechanism for the activation of carboxylate substrates but are also very likely marked by a similar functional architecture. In soybean, four 4-coumarate:CoA ligases have been described that display different substrate utilization profiles. One of these (Gm4CL1) represented an isoform that was able to convert highly ring-substituted cinnamic acids. Using computer-based predictions of the conformation of Gm4CL1, a peptide motif was identified and experimentally verified to exert a critical influence on the selectivity toward differently ring-substituted cinnamate substrates. Furthermore, one unique amino acid residue present in the other isoenzymes of soybean was shown to be responsible for the incapability to accommodate highly substituted substrates. The deletion of this residue conferred the ability to activate sinapate and, in one case, also 3,4-dimethoxy cinnamate and was accompanied by a significantly better affinity for ferulate. The engineering of the substrate specificity of the critical enzymes that activate the common precursors of a variety of phenylpropanoid-derived secondary metabolites may offer a convenient tool for the generation of transgenic plants with desirably modified metabolite profiles.  相似文献   

14.
We present a new support vector machine (SVM)-based approach to predict the substrate specificity of subtypes of a given protein sequence family. We demonstrate the usefulness of this method on the example of aryl acid-activating and amino acid-activating adenylation domains (A domains) of nonribosomal peptide synthetases (NRPS). The residues of gramicidin synthetase A that are 8 A around the substrate amino acid and corresponding positions of other adenylation domain sequences with 397 known and unknown specificities were extracted and used to encode this physico-chemical fingerprint into normalized real-valued feature vectors based on the physico-chemical properties of the amino acids. The SVM software package SVM(light) was used for training and classification, with transductive SVMs to take advantage of the information inherent in unlabeled data. Specificities for very similar substrates that frequently show cross-specificities were pooled to the so-called composite specificities and predictive models were built for them. The reliability of the models was confirmed in cross-validations and in comparison with a currently used sequence-comparison-based method. When comparing the predictions for 1230 NRPS A domains that are currently detectable in UniProt, the new method was able to give a specificity prediction in an additional 18% of the cases compared with the old method. For 70% of the sequences both methods agreed, for <6% they did not, mainly on low-confidence predictions by the existing method. None of the predictive methods could infer any specificity for 2.4% of the sequences, suggesting completely new types of specificity.  相似文献   

15.
Cell density-dependent gene expression in Pseudomonas aeruginosa is controlled, in part, by the quorum-sensing regulator LasR. lasR null mutants exhibited a reproducible 2-fold decrease in production of the catecholate-hydroxamate siderophore pyoverdine during grown under iron-limiting conditions. Similarly, lasI mutants defective in the biosynthesis of the autoinducer PAI-1 also exhibited a 2-fold decrease in pyoverdine production which could be largely restored upon addition of exogenous PAI-1. lasR mutants were not altered with respect to expression of the pvdD gene involved in the synthesis of the peptide portion of pyoverdine, indicating that some other pyoverdine biosynthetic gene(s) were affected by the LasRI status of the cell. This represents the first report of quorum-sensing regulation of siderophore production in bacteria and highlights the fact that cell density, while not an essential signal for pyoverdine expression, does enhance production of this siderophore.  相似文献   

16.
Abstract Peptide synthetases are large multienzyme complexes that catalyze the non-ribosomal synthesis of a structurally diverse family of bioactive peptides. They possess a multidomain structure and employ the thiotemplate mechanism to activate, modify and link together by amide or ester bonds the constituent amino acids of the peptide product. The domains, which represent the functional building units of peptide synthetases, appear to act as independent enzymes whose specific linkage order forms the protein-template that defines the sequence of the incorporated amino acids. Two types of domains have been characterized in peptide synthetases of bacterial and fungal origin: type I comprises about 600 amino acids and contains at least two modules involved in substrate recognition, adenylation and thioester formation, whereas type II domains carry in addition an insertion of about 430 amino acids that may function as a N-methyltransferase module. The role of other genes associated with bacterial opérons encoding peptide synthetases is also discussed.  相似文献   

17.
18.
The peptide transport protein DtpT of Lactococcus lactis was purified and reconstituted into detergent-destabilized liposomes. The kinetics and substrate specificity of the transporter in the proteoliposomal system were determined, using Pro-[(14)C]Ala as a reporter peptide in the presence of various peptides or peptide mimetics. The DtpT protein appears to be specific for di- and tripeptides, with the highest affinities for peptides with at least one hydrophobic residue. The effect of the hydrophobicity, size, or charge of the amino acid was different for the amino- and carboxyl-terminal positions of dipeptides. Free amino acids, omega-amino fatty acid compounds, or peptides with more than three amino acid residues do not interact with DtpT. For high-affinity interaction with DtpT, the peptides need to have free amino and carboxyl termini, amino acids in the L configuration, and trans-peptide bonds. Comparison of the specificity of DtpT with that of the eukaryotic homologues PepT(1) and PepT(2) shows that the bacterial transporter is more restrictive in its substrate recognition.  相似文献   

19.
The fluorescent dihydroxyquinoline chromophore of the pyoverdine siderophore in Pseudomonas is a condensation product of D-tyrosine and l-2,4-diaminobutyrate. Both pvdH and asd (encoding aspartate beta-semialdehyde dehydrogenase) knockout mutants of Pseudomonas aeruginosa PAO1 were unable to synthesize pyoverdine under iron-limiting conditions in the absence of l-2,4-diaminobutyrate in the culture media. The pvdH gene was subcloned, and the gene product was hyperexpressed and purified from P. aeruginosa PAO1. PvdH was found to catalyze an aminotransferase reaction, interconverting aspartate beta-semialdehyde and l-2,4-diaminobutyrate. Steady-state kinetic analysis with a novel coupled assay established that the enzyme adopts a ping-pong kinetic mechanism and has the highest specificity for alpha-ketoglutarate. The specificity of the enzyme toward the smaller keto acid pyruvate is 41-fold lower. The enzyme has negligible activity toward other keto acids tested. Homologues of PvdH were present in the genomes of other Pseudomonas spp. These homologues were found in the DNA loci of the corresponding genomes that contain other pyoverdine synthesis genes. This suggests that there is a general mechanism of l-2,4-diaminobutyrate synthesis in Pseudomonas strains that produce the pyoverdine siderophore.  相似文献   

20.
Many peptide antibiotics in prokaryotes and lower eukaryotes are produced non-ribosomally by multi-enzyme complexes. Analysis of gene-derived amino acid sequences of some peptide synthetases of bacterial and fungal origins revealed a high degree of conservation (35-50% identity). The genes encoding those peptide synthetases are clustered into large operons with repetitive domains (about 600 amino acids), in the case of synthetases activating more than one amino acid. We used two 35-mer oligonucleotides derived from two highly conserved regions of known peptide synthetases to identify the surfactin synthetase operon in Bacillus subtilis ATCC 21332, a strain not accessible to genetic manipulation. We show that the derived oligonucleotides can be used not only for the identification of unknown peptide synthetase genes by hybridization experiments but also in sequencing reactions as primers to identify internal domain sequences. Using this method, a 25.8-kb chromosomal DNA fragment bearing a part of the surfactin biosynthesis operon was cloned and partial sequences of two internal domains were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号