首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vignieri SN 《Molecular ecology》2005,14(7):1925-1937
In species affiliated with heterogeneous habitat, we expect gene flow to be restricted due to constraints placed on individual movement by habitat boundaries. This is likely to impact both individual dispersal and connectivity between populations. In this study, a GIS-based landscape genetics approach was used, in combination with fine-scale spatial autocorrelation analysis and the estimation of recent intersubpopulation migration rates, to infer patterns of dispersal and migration in the riparian-affiliated Pacific jumping mouse (Zapus trinotatus). A total of 228 individuals were sampled from nine subpopulations across a system of three rivers and genotyped at eight microsatellite loci. Significant spatial autocorrelation among individuals revealed a pattern of fine-scale spatial genetic structure indicative of limited dispersal. Geographical distances between pairwise subpopulations were defined following four criteria: (i) Euclidean distance, and three landscape-specific distances, (ii) river distance (distance travelled along the river only), (iii) overland distance (similar to Euclidean, but includes elevation), and (iv) habitat-path distance (a least-cost path distance that models movement along habitat pathways). Pairwise Mantel tests were used to test for a correlation between genetic distance and each of the geographical distances. Significant correlations were found between genetic distance and both the overland and habitat-path distances; however, the correlation with habitat-path distance was stronger. Lastly, estimates of recent migration rates revealed that migration occurs not only within drainages but also across large topographic barriers. These results suggest that patterns of dispersal and migration in Pacific jumping mice are largely determined by habitat connectivity.  相似文献   

2.
E Ockinger  H Van Dyck 《PloS one》2012,7(8):e41517
Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape.  相似文献   

3.
Natal dispersal in a vagile carnivore, the American marten (Martes americana), was studied by comparing radio-tracking data and microsatellite genetic structure in two populations occupying contrasting habitats. The genetic differentiation determined among groups of individuals using F(ST) indices appeared to be weak in both landscapes, and showed no increase with geographical distance. Genetic structure investigated using pairwise genetic distances between individuals conversely showed a pattern of isolation by distance (IBD), but only in the population occurring in a homogeneous high-quality habitat, therefore showing the advantage of individual-based analyses in detecting within-population processes and local landscape effects. The telemetry study of juveniles revealed a leptokurtic distribution of dispersal distances in both populations, and estimates of the mean squared parent-offspring axial distance (sigma2) inferred both from the genetic pattern of IBD and from the radio-tracking survey showed that most juveniles make little contribution to gene flow.  相似文献   

4.
基于生境斑块的滇金丝猴景观连接度分析   总被引:2,自引:0,他引:2  
基于生境斑块,结合最小费用距离并运用图论法对滇金丝猴分布区进行栖息地连接度分析,研究利用猴群的现实分布结合Logistic回归模型确定了景观功能连接的最佳距离阈值,对于功能畅通的组分,以景观指数BC定量识别出作为"踏脚石"的优先保护区域;对于功能不连接的组分,绘制出最小费用路径,确定了该路径中优先恢复区域。结果表明:最佳的最小费用距离阈值为1400,该阈值下猴群主要存在于5个组分中,所有组分中猴群间的连接度优劣排序为组分3组分1组分5组分4,龙马山猴群(G15)没有"踏脚石"斑块使其与同一组分内的其他猴群相连接,应考虑优先恢复该区域的植被,研究成果对于该物种的保护和其他濒危物种的类似研究具有较强的参考价值和借鉴意义。  相似文献   

5.
The South African grassland biome is one of the most threatened biomes in South Africa. Approximately 45% of the grassland biome area is transformed, degraded or severely invaded by alien plants and the remaining natural areas are highly fragmented. In this fragmented landscape, the connectivity between habitat patches is very important to maintain viable populations. In this study we aimed to quantify connectivity of the grassland biome in Mpumalanga using graph theory in order to identify conservation priorities and to direct conservation efforts. Graph theory‐based connectivity indices have the ability to combine spatially explicit habitat data with species specific dispersal data and can quantify structural and functional connectivity over large landscapes. We used these indices to quantify the overall connectivity of the study area, to determine the influence of abandoned croplands on overall connectivity, and to identify the habitat patches and vegetation types most in need of maintaining overall connectivity. Natural areas were identified using 2008 land cover data for Mpumalanga. Connectivity within the grassland biome of Mpumalanga was analysed for grassland species with dispersal distances ranging from 50 to 1000 m. The grassland habitat patches were mostly well connected, with 99.6% of the total habitat area connected in a single component at a threshold distance of 1000 m. The inclusion of abandoned croplands resulted in a 33% increase in connectivity at a threshold distance of 500 m. The habitat patches most important for maintaining overall connectivity were the large patches of continuous habitat in the upper and lower centres of the study area and the most important vegetation types were the Wakkerstroom Montane Grassland and the Eastern Temperate Freshwater Wetlands. These results can be used to inform management decisions and reserve design to improve and maintain connectivity in this biome.  相似文献   

6.
Fragmented landscapes resulting from anthropogenic habitat modification can have significant impacts on dispersal, gene flow, and persistence of wildlife populations. Therefore, quantifying population connectivity across a mosaic of habitats in highly modified landscapes is critical for the development of conservation management plans for threatened populations. Endangered populations of the eastern tiger salamander (Ambystoma tigrinum) in New York and New Jersey are at the northern edge of the species’ range and remaining populations persist in highly developed landscapes in both states. We used landscape genetic approaches to examine regional genetic population structure and potential barriers to migration among remaining populations. Despite the post-glacial demographic processes that have shaped genetic diversity in tiger salamander populations at the northern extent of their range, we found that populations in each state belong to distinct genetic clusters, consistent with the large geographic distance that separates them. We detected overall low genetic diversity and high relatedness within populations, likely due to recent range expansion, isolation, and relatively small population sizes. Nonetheless, landscape connectivity analyses reveal habitat corridors among remaining breeding ponds. Furthermore, molecular estimates of population connectivity among ponds indicate that gene flow still occurs at regional scales. Further fragmentation of remaining habitat will potentially restrict dispersal among breeding ponds, cause the erosion of genetic diversity, and exacerbate already high levels of inbreeding. We recommend the continued management and maintenance of habitat corridors to ensure long-term viability of these endangered populations.  相似文献   

7.
Changes in agricultural practices and forest fragmentation can have a dramatic effect on landscape connectivity and the dispersal of animals, potentially reducing gene flow within populations. In this study, we assessed the influence of woodland connectivity on gene flow in a traditionally forest-dwelling species--the European roe deer--in a fragmented landscape. From a sample of 648 roe deer spatially referenced within a study area of 55 x 40 km, interindividual genetic distances were calculated from genotypes at 12 polymorphic microsatellite loci. We calculated two geographical distances between each pair of individuals: the Euclidean distance (straight line) and the 'least cost distance' (the trajectory that maximizes the use of wooded corridors). We tested the correlation between genetic pairwise distances and the two types of geographical pairwise distance using Mantel tests. The correlation was better using the least cost distance, which takes into account the distribution of wooded patches, especially for females (the correlation was stronger but not significant for males). These results suggest that in a fragmented woodland area roe deer dispersal is strongly linked to wooded structures and hence that gene flow within the roe deer population is influenced by the connectivity of the landscape.  相似文献   

8.
Many organisms show polymorphism in dispersal distance strategies. This variation is particularly ecological relevant if it encompasses a functional separation of short‐ (SDD) and long‐distance dispersal (LDD). It remains, however, an open question whether both parts of the dispersal kernel are similarly affected by landscape related selection pressures. We implemented an individual‐based model to analyze the evolution of dispersal traits in fractal landscapes that vary in the proportion of habitat and its spatial configuration. Individuals are parthenogenetic with dispersal distance determined by two alleles on each individual's genome: one allele coding for the probability of global dispersal and one allele coding for the variance σ of a Gaussian local dispersal with mean value zero. Simulations show that mean distances of local dispersal and the probability of global dispersal, increase with increasing habitat availability, but that changes in the habitat's spatial autocorrelation impose opposing selective pressure: local dispersal distances decrease and global dispersal probabilities increase with decreasing spatial autocorrelation of the available habitat. Local adaptation of local dispersal distance emerges in landscapes with less than 70% of clumped habitat. These results demonstrate that long and short distance dispersal evolve separately according to different properties of the landscape. The landscape structure may consequently largely affect the evolution of dispersal distance strategies and the level of dispersal polymorphism.  相似文献   

9.
Lack of landscape connectivity and habitat loss is major threats to biodiversity and ecosystem integrity in nature reserves aimed at conservation. In this study, we used structural pattern and functional connectivity metrics to analyze the spatial patterns and landscape connectivity of habitat patches for the Shangyong sub-reserve of the Xishuangbanna Nature Reserve from 1970, 1990, and 2000. On the basis of vegetation and land cover data, we applied the equivalent connected area ECA(PC) indicator to analyze the changes in forest connectivity. Four distance thresholds (2, 4, 8, 12 km) were considered to compare the patch importance of connectivity by dECA values. The results showed the declining trends of landscape connectivity measured by ECA(PC) index from 1970 to 2000. The importance of connectivity in each forest patch varied with the increment of dispersal distances at the patch level, and some important habitat patches, which exhibit a potential to enhance landscape connectivity, should be given more attention. The least-cost pathways based on network structure were displayed under four dispersal distances in three periods. The results showed that the number of paths among the fragments of forest patches exhibited radical increases for larger dispersal distances. Further correlation analyses of AWF, ECA (IIC), and ECA (PC) showed the weakest and least-frequent correlations with the structural pattern indices, while H presented more significant correlations with the PD fragmentation metric. Furthermore, Kendall's rank correlations between the forest patch area and functional connectivity indicators showed that dECA (PC) and dAWF indicators should provided the area-based prioritization of habitat patches. Moreover, the low-rank correlations showed that dF and dLCP can be considered as effective and appropriate indicators for the evaluation of habitat features and network patterns.  相似文献   

10.
Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.  相似文献   

11.
Connectivity of populations influences the degree to which species maintain genetic diversity and persist despite local extinctions. Natural landscape features are known to influence connectivity, but global anthropogenic landscape change underscores the importance of quantifying how human-modified landscapes disrupt connectivity of natural populations. Grasslands of western North America have experienced extensive habitat alteration, fragmenting populations of species such as black-tailed prairie dogs (Cynomys ludovicianus). Population sizes and the geographic range of prairie dogs have been declining for over a century due to habitat loss, disease, and eradication efforts. In many places, prairie dogs have persisted in the face of emerging urban landscapes that carve habitat into smaller and smaller fragments separated by uninhabitable areas. In extreme cases, prairie dog colonies are completely bounded by urbanization. Connectivity is particularly important for prairie dogs because colonies suffer high probabilities of extirpation by plague, and dispersal permits recolonization. Here we explore connectivity of prairie dog populations using analyses of 11 microsatellite loci for 9 prairie dog colonies spanning the fragmented landscape of Boulder County, Colorado. Isolation-by-resistance modeling suggests that wetlands and high intensity urbanization limit movement of prairie dogs. However, prairie dogs appear to move moderately well through low intensity development (including roads) and freely through cropland and grassland. Additionally, there is a marked decline in gene flow between colonies with increasing geographic distance, indicating isolation by distance even in an altered landscape. Our results suggest that prairie dog colonies retain some connectivity despite fragmentation by urbanization and agricultural development.  相似文献   

12.
Functional connectivity is known to have an important, positive influence on species persistence. Measurements of functional connectivity traditionally focus on structural attributes of landscapes such as the distance and matrix type between habitat patches as well as on how species interact with those structural attributes. However, we propose that the social behavior of a species, through conspecific and heterospecific attraction, will also impact connectivity by changing how dispersers move with respect to each other and occupied patches. We analyzed functional connectivity patterns using circuit and graph theory for golden-headed lion tamarins (Leontopithecus chrysomelas) in Brazil under three scenarios. In the first scenario, we looked at connectivity without the effects of attraction under varying maximum dispersal distance and ecological movement cost thresholds. In the second scenario, we allowed dispersers to travel over more hostile matrix than they normally would to reach an occupied patch. In the final scenario, we allowed dispersers to move only to occupied patches. We found that, according to the first scenario, range-wide functional landscape connectivity for golden-headed lion tamarins is low at realistic maximum dispersal distance and movement cost thresholds. Incorporating the effects of conspecific or heterospecific attraction would increase functional connectivity, in the case of scenario two, or decrease functional connectivity, in the case of scenario three. Because conspecific/heterospecific attraction can have an impact on movement for some species, this factor should be incorporated in assessments of functional connectivity patterns for social species and others where patch occupancy is likely to influence the movements of dispersers.  相似文献   

13.
Estimating plant migration rates under habitat loss and fragmentation   总被引:8,自引:0,他引:8  
Changes in the global environment are modifying the geographical locations of habitats suitable for plant growth. The capacity of plants to migrate to sites of suitable environmental quality will strongly influence future distributions of plant diversity. However, it is not well understood how rates of plant migration are influenced by the habitat loss and habitat fragmentation that characterise contemporary landscapes. In this study we develop a model that can predict migration rates in both intact landscapes (potential migration rate) and in fragmented landscapes (realised migration rates). Migration rates in fragmented landscapes might be slower for many reasons. In this study we focus on two, non‐exclusive reasons. First, the processes that move seeds may break down in fragmented landscapes causing seeds to be dispersed shorter distances. Second, in fragmented landscapes some proportion of seeds will not be deposited in habitats suitable for recruitment. We describe the breakdown of dispersal processes as a competing risk between the factors influencing dispersal in intact landscapes and the factors that may disrupt dispersal processes in fragmented landscapes. We show how the parameters that influence dispersal in fragmented landscapes can be estimated, and how these estimates can be used to forecast migration rates using an integrodifference equation (IDE). The forecasts of the IDE described the effects of reduced dispersal distances adequately. However, the IDE produced biased estimates of the effects of a reduction in plant habitat on migration rates. Model analyses showed that, although we can expect realised migration rates to be lower than potential migration rates, we can also expect the sensitivity of migration rate to habitat loss to vary. In addition, simulations showed that the qualitative nature of the responses of migration rate to habitat loss were variable – some model species responded non‐linearly to habitat loss, others responded linearly. While our method provides guidelines for empirical data collection and model parameterisation, we recognise that obtaining these data will be challenging.  相似文献   

14.
Landscape connectivity is a key process for the functioning and persistence of spatially-structured populations in fragmented landscapes. Butterflies are particularly sensitive to landscape change and are excellent model organisms to study landscape connectivity. Here, we infer functional connectivity from the assessment of the selection of different landscape elements in a highly fragmented landscape in the Île-de-France region (France). Firstly we measured the butterfly preferences of the Large White butterfly (Pieris brassicae) in different landscape elements using individual release experiments. Secondly, we used an inter-patch movement model based on butterfly choices to build the selection map of the landscape elements to moving butterflies. From this map, functional connectivity network of P. brassicae was modelled using landscape graph-based approach. In our study area, we identified nine components/groups of connected habitat patches, eight of them located in urbanized areas, whereas the last one covered the more rural areas. Eventually, we provided elements to validate the predictions of our model with independent experiments of mass release-recapture of butterflies. Our study shows (1) the efficiency of our inter-patch movement model based on species preferences in predicting complex ecological processes such as dispersal and (2) how inter-patch movement model results coupled to landscape graph can assess landscape functional connectivity at large spatial scales.  相似文献   

15.
Aim The aim of this study was to understand the roles of landscape features in shaping patterns of contemporary and historical genetic diversification among populations of the Andean tree frog (Hypsiboas andinus) across spatial scales. Location Andes mountains, north‐western Argentina, South America. Methods Mitochondrial DNA control region sequences were utilized to assess genetic differentiation among populations and calculate population pair‐wise genetic distances. Three models of movement, namely traditional straight‐line distance and two effective distances based on habitat classification, were examined to determine which of these explained the most variation in pair‐wise population genetic differentiation. The two habitat classifications were based on digital vegetation and hydrology layers that were generated from a 90‐m resolution digital elevation model (DEM) and known relationships between elevation and habitat. Mantel tests were conducted to test for correlations between geographic and genetic distance matrices and to estimate the percentage variation explained by each type of geographic distance. To investigate the location of possible barriers to gene flow, we used Monmonier’s maximum difference algorithm as implemented in barrier 2.2. Results At both geographic scales, effective distances explained more variation in genetic differentiation than did straight‐line distance. The least‐cost distances based on the simple classification performed better than the more detailed habitat classification. We controlled for the effects of historical range fragmentation determined from previous nested clade analyses, and therefore evaluated the effect of different distances on the genetic variation attributable to more recent factors. Effective distances identified populations that were highly divergent as a result of isolation in unsuitable habitats. The proposed locations of barriers to gene flow identified using Monmonier’s maximum difference algorithm corresponded well with earlier analyses and supported findings from our partial Mantel tests. Main conclusions Our results indicate that landscape features have been important in both historical and contemporary genetic structuring of populations of H. andinus at both large and small spatial scales. A landscape genetic perspective offers novel insights not provided by traditional phylogeographic studies: (1) effective distances can better explain patterns of differentiation in populations, especially in heterogeneous landscapes where barriers to dispersal may be common; and (2) least‐cost path analysis can help to identify corridors of movement between populations that are biologically more realistic.  相似文献   

16.
In heterogeneous landscapes, physical barriers and loss of structural connectivity have been shown to reduce gene flow and therefore lead to population structuring. In this study, we assessed the influence of landscape features on population genetic structure and gene flow of a semiaquatic species, the muskrat. A total of 97 muskrats were sampled from three watersheds near Sudbury, Ontario, Canada. We estimated population genetic structure using 11 microsatellite loci and identified a single genetic cluster and no genetic differences were found among the watersheds as a result of high levels of gene flow. At finer scales, we assessed the correlation between individual pairwise genetic distances and Euclidean distance as well as different models of least cost path (LCP). We used a range of cost values for the landscape types in order to build our LCP models. We found a positive relationship between genetic distance and least cost distance when we considered roads as corridors for movements. Open landscapes and urban areas seemed to restrict but not prevent gene flow within the study area. Our study underlines the high‐dispersal ability of generalist species in their use of landscape and highlights how landscape features often considered barriers to animal movements are corridors for other species.  相似文献   

17.
Achieving long‐term persistence of species in urbanized landscapes requires characterizing population genetic structure to understand and manage the effects of anthropogenic disturbance on connectivity. Urbanization over the past century in coastal southern California has caused both precipitous loss of coastal sage scrub habitat and declines in populations of the cactus wren (Campylorhynchus brunneicapillus). Using 22 microsatellite loci, we found that remnant cactus wren aggregations in coastal southern California comprised 20 populations based on strict exact tests for population differentiation, and 12 genetic clusters with hierarchical Bayesian clustering analyses. Genetic structure patterns largely mirrored underlying habitat availability, with cluster and population boundaries coinciding with fragmentation caused primarily by urbanization. Using a habitat model we developed, we detected stronger associations between habitat‐based distances and genetic distances than Euclidean geographic distance. Within populations, we detected a positive association between available local habitat and allelic richness and a negative association with relatedness. Isolation‐by‐distance patterns varied over the study area, which we attribute to temporal differences in anthropogenic landscape development. We also found that genetic bottleneck signals were associated with wildfire frequency. These results indicate that habitat fragmentation and alterations have reduced genetic connectivity and diversity of cactus wren populations in coastal southern California. Management efforts focused on improving connectivity among remaining populations may help to ensure population persistence.  相似文献   

18.
Understanding factors that ameliorate the impact of habitat loss is a major focus of conservation research. One key factor influencing species persistence and evolution is the ability to disperse across increasingly patchy landscapes. Here we ask whether interpatch distance (a proxy for habitat loss) and dispersal strategy can interact to form thresholds where connectivity breaks down. We assayed dispersal across a range of interpatch distances in fruit flies carrying allelic variants of a gene known to underlie differences in dispersal strategy. Dispersal‐limited flies experienced a distinct negative threshold in connectivity at greater interpatch distances, and this was not observed in more dispersive flies. Consequently, this differential response of dispersal‐limited and more dispersive flies to decreasing connectivity suggests that habitat loss could have important implications on the evolution and maintenance of genetic variation underlying dispersal strategy.  相似文献   

19.
Because spatial connectivity is critical to dispersal success and persistence of species in highly fragmented landscapes, the way that we envision and measure connectivity is consequential for biodiversity conservation. Connectivity metrics used for predictive modeling of spatial turnover and patch occupancy for metapopulations, such as with Incidence Function Models (IFM), incorporate distances to and sizes of possible source populations. Here, our focus is on whether habitat quality of source patches also is considered in these connectivity metrics. We propose that effective areas (weighted by habitat quality) of source patches should be better surrogates for population size and dispersal potential compared to unadjusted patch areas. Our review of a representative sample of the literature revealed that only 12.5% of studies incorporated habitat quality of source patches into IFM-type connectivity metrics. Quality of source patches generally was not taken into account in studies even if habitat quality of focal patches was included in analyses. We provide an empirical example for a metapopulation of a rare wetland species, the round-tailed muskrat (Neofiber alleni), demonstrating that a connectivity metric based on effective areas of source patches better predicts patch colonization and occupancy than a metric that used simple patch areas. The ongoing integration of landscape ecology and metapopulation dynamics could be hastened by incorporating habitat quality of source patches into spatial connectivity metrics applied to species conservation in fragmented landscapes.  相似文献   

20.
Urban areas are highly fragmented and thereby exert strong constraints on individual dispersal. Despite this, some species manage to persist in urban areas, such as the garden snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using landscape genetic approaches, we combined study area replication and multiscale analysis to determine how landscape composition, configuration and connectivity influence snail dispersal across urban areas. At the overall landscape scale, areas with a high percentage of roads decreased genetic differentiation between populations. At the population scale, genetic differentiation was positively linked with building surface, the proportion of borders where wooded patches and roads appeared side by side and the proportion of borders combining wooded patches and other impervious areas. Analyses based on pairwise genetic distances validated the isolation‐by‐distance and isolation‐by‐resistance models for this land snail, with an equal fit to least‐cost paths and circuit‐theory‐based models. Each of the 12 landscapes analysed separately yielded specific relations to environmental features, whereas analyses integrating all replicates highlighted general common effects. Our results suggest that urban transport infrastructures facilitate passive snail dispersal. At a local scale, corresponding to active dispersal, unfavourable habitats (wooded and impervious areas) isolate populations. This work upholds the use of replicated landscapes to increase the generalizability of landscape genetics results and shows how multiscale analyses provide insight into scale‐dependent processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号