共查询到20条相似文献,搜索用时 15 毫秒
1.
Maryam Borhani-Haghighi Yousef Mohamadi Iraj Ragerdi Kashani 《Journal of cellular biochemistry》2019,120(8):12785-12795
Prenatal white matter injury is a serious problem due to maternal inflammation leading to postnatal disabilities. In this study, we used the periventricular leukomalacia (PVL) model as a common prenatal white matter injury by maternal administration of lipopolysaccharide (LPS). Neural stem cells (NSCs) have shown therapeutic ability in neurological disorders through a different mechanism such as immunomodulation. Here, we studied the preventive potential of NSCs following in utero transplantation into the embryonic lateral ventricle in an LPS-induced white matter injury model. Pregnant animals were divided into three groups and received phosphate buffered saline, LPS, or LPS + NSCs. The brains of offspring were obtained and evaluated by real-time polymerase chain reaction (PCR), immunohistochemy, enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling (TUNEL), and caspase-3 activity assay. The LPS-induced maternal inflammation degenerated the myelin sheath in the offspring periventricular region which was associated with an increased microglial number, oligodendrocytes degeneration, proinflammatory cytokine secretion, and cell apoptosis. The transplanted NSCs homed into the brain and ameliorated the evaluated parameters. The expression of proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), cell apoptosis and caspase-3 activity were inhibited by NSCs. In addition, Olig2 and myelin basic protein immunohistochemy staining showed that prenatal NSCs transplantation augmented the myelination in the periventricular white matter of offspring. In conclusion, we think that prenatal therapeutic strategies, such as in utero NSCs transplantation, may prevent prenatal white matter injury after birth. 相似文献
2.
Pei Chun Lai Yen Ta Huang Chia Chen Wu Ching-Jung Lai Pen Jung Wang Ted H Chiu 《Journal of biomedical science》2011,18(1):69
Background
Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE). Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. 相似文献3.
Langnaese K Richter K Smalla KH Krauss M Thomas U Wolf G Laube G 《Developmental neurobiology》2007,67(4):422-437
Knock out mice deficient for the splice-isoform alphaalpha of neuronal nitric oxide synthase (nNOSalphaalpha) display residual nitric oxide synthase activity and immunosignal. To attribute this signal to the two minor neuronal nitric oxide synthase splice variants, betabeta and gammagamma, we generated isoform-specific anti-peptide antibodies against the nNOSalphaalpha specific betabeta-finger motif involved in PDZ domain scaffolding and the nNOSbetabeta specific N-terminus. The nNOSalphaalpha betabeta-finger-specific antibody clearly recognized the 160-kDa band of recombinant nNOSalphaalpha on Western blots. Using immunocytochemistry, this antibody displayed, in rats and wild-type mice, a labeling pattern similar to but not identical with that obtained using a commercial pan-nNOS antibody. This similarity indicates that the majority of immunocytochemically detectable nNOS is not likely to be complexed with PDZ-domain proteins via the betabeta-finger motif. This conclusion was confirmed by the inhibition of PSD-95/nNOS interaction by the nNOSalphaalpha betabeta-finger antibody in pull-down assays. By contrast, nNOSalphaalpha betabeta-finger labeling was clearly reduced in hippocampal and cortical neuropil areas enriched in NMDA receptor complex containing spine synapses. In nNOSalphaalpha knock out mice, nNOSalphaalpha was not detectable, whereas the pan-nNOS antibody showed a distinct labeling of cell bodies throughout the brain, most likely reflecting betabeta/gammagamma-isoforms in these cells. The nNOSbetabeta antibody clearly detected bacterial expressed nNOSbetabeta fusion protein and nNOSbetabeta in overexpressing HEK cells by Western blotting. Immunocytochemically, individual cell bodies in striatum, cerebral cortex, and in some brain stem nuclei were labeled in knock out but not in wild-type mice, indicating an upregulation of nNOSbetabeta in nNOSalphaalpha deficient animals. 相似文献
4.
一氧化碳吸入对脂多糖诱导大鼠急性肺损伤的保护作用 总被引:14,自引:0,他引:14
血红素氧合酶(heme oxygenase,HO)降解血红素的主要代谢产物一氧化碳(carbon monoxide,CO)具有抗氧化、抗炎症和抑制细胞凋亡作用,而脂多糖(lipopolysaccharide,LPS)诱导的肺组织过氧化、炎症性损伤及大量肺泡上皮和血管内皮细胞凋亡正是导致肺损伤(lung injury,LI)的关键.由此我们猜想,CO有可能通过上述机制对LI起保护作用.通过静脉注入LPS(5 mg/kg体重)诱导大鼠LI,观察吸入室内空气或2.5×10-4(V/V)CO 3 h后,肺氧化酶学、炎症细胞因子、细胞凋亡、HO-1表达及组织形态学变化.结果显示,静脉注入LPS诱导LI后,CO吸入组大鼠肺肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素6(interlukin-6,IL-6)、丙二醛(maleic dialdehyde,MDA)、髓过氧化物酶(myeloperoxidase,MPO)和细胞凋亡分别为(0.91±0.25)pg/mg蛋白、(0.64±0.05)pg/mg蛋白、(1.02±0.23)nmol/mg蛋白、(7.18±1.62)U/mg蛋白、(1.60±0.34)%,均显著低于LI组的(1.48±0.23)pg/mg蛋白、(1.16±0.26)pg/mg蛋白、(1.27+0.33)nmol/mg蛋白、(8.16+1.49)U/mg蛋白、(3.18±0.51)%(P<0.05).CO吸入组HO-1、白细胞介素10(interlukin-10,IL-10)表达和超氧化物歧化酶(superoxide dismutase,SOD)活性分别为(5.43±0.92)、(0.26±0.07)pg/mg蛋白、(60.09±10.21)U/mg蛋白,它们均显著高于LI组的(3.08±0.82)、(0.15±0.03)pg/mg蛋白、(50.98±6.88)U/mg蛋白(P<0.05).与LI组相比,CO吸入组肺损伤减轻.研究结果表明,低浓度CO吸入通过抗氧化、抗炎症、抑制细胞凋亡、上调HO-1表达而减轻LPS诱导的肺损伤. 相似文献
5.
The effects of neonatal undernutrition and postweaning protein deficiency on the content and lipid composition of gray and
white matter of 63 days old rat brain have been studied. The concentrations of different lipids remain the same, but the relative
proportion of gray and white matter changes thus reflecting the differences in the concentration of whole brain lipids. 相似文献
6.
Kazuhide Hayakawa Nobukazu Miyamoto Ji Hae Seo Loc‐Duyen D. Pham Kyu‐Won Kim Eng H. Lo Ken Arai 《Journal of neurochemistry》2013,125(2):273-280
High‐mobility group box 1 (HMGB1) was initially described as a damage‐associated‐molecular‐pattern (DAMP) mediator that worsens acute brain injury after stroke. But, recent findings suggest that HMGB1 can play a surprisingly beneficial role during stroke recovery by promoting endothelial progenitor cell (EPC) function and vascular remodeling in cortical gray matter. Here, we ask whether HMGB1 may also influence EPC responses in white matter injury. The standard lysophosphatidylcholine (LPC) injection model was used to induce focal demyelination in the corpus callosum of mice. Immunostaining showed that within the focal white matter lesions, HMGB1 was up‐regulated in GFAP‐positive reactive astrocytes, along with the accumulation of Flk1/CD34‐double‐positive EPCs that expressed pro‐recovery mediators such as brain‐derived neurotrophic factor and basic fibroblast growth factor. Astrocyte–EPC signaling required the HMGB1 receptor RAGE as treatment with RAGE‐neutralizing antibody significantly decreased EPC accumulation. Moreover, suppression of HMGB1 with siRNA in vivo significantly decreased EPC numbers in damaged white matter as well as proliferated endothelial cell numbers. Finally, in vitro cell culture systems confirmed that HMGB1 directly affected EPC function such as migration and tube formation. Taken together, our findings suggest that HMGB1 from reactive astrocytes may attract EPCs to promote recovery after white matter injury. 相似文献
7.
Free radical-induced lipid peroxidation (LP) is critical in the evolution of secondary injury following traumatic brain injury (TBI). Previous studies in our laboratory demonstrated that U-83836E, a potent LP inhibitor, can reduce post-TBI LP along with an improved maintenance of mouse cortical mitochondrial bioenergetics and calcium (Ca(2+)) buffering following severe (1.0 mm; 3.5 m/s) controlled cortical impact TBI (CCI-TBI). Based upon this preservation of a major Ca(2+) homeostatic mechanism, we have now performed dose-response and therapeutic window analyses of the ability of U-83836E to reduce post-traumatic calpain-mediated cytoskeletal (α-spectrin) proteolysis in ipsilateral cortical homogenates at its 24 h post-TBI peak. In the dose-response analysis, mice were treated with a single i.v. dose of vehicle or U-83836E (0.1, 0.3, 1.3, 3.0, 10.0 or 30.0 mg/kg) at 15 min after injury. U-83836E produced a dose-related attenuation of α-spectrin degradation with the maximal decrease being achieved at 3.0 mg/kg. Next, the therapeutic window was tested by delaying the single 3 mg/kg i.v. dose from 15 min post-injury out to 1, 3, 6 or 12 h. No reduction in α-spectrin degradation was observed when the treatment delay was 1 h or longer. However, in a third experiment, we re-examined the window with repeated U-83836E dosing (3.0 mg/kg i.v. followed by 10 mg/kg i.p. maintenance doses at 1 and 3 h after the initial i.v. dose) which significantly reduced 24 h α-α-spectrin degradation even when treatment initiation was withheld until 12 h post-TBI. These results demonstrate the relationship between post-TBI LP, disruptions in neuronal Ca(2+) homeostasis and calpain-mediated cytoskeletal damage. 相似文献
8.
Catalytic asymmetric synthesis of alpha,beta-epoxy esters and alpha,beta-epoxy carboxylic acid derivatives is described. Catalytic asymmetric epoxidation of alpha,beta-unsaturated carboxylic acid imidazolides using La-BINOL-Ph(3)As=O complex gave the corresponding alpha,beta-epoxy peroxy tert-butyl esters, which were directly converted to the alpha,beta-epoxy methyl esters by adding methanol to the reaction. This catalytic system had broad generality for epoxidation of various substrates. With the use of 5-10 mol% of the catalyst, both beta-aryl and beta-alkyl-substituted-alpha,beta-epoxy methyl esters were obtained in up to 91% yield and in up to 93% enantiomeric excess. In addition, efficient transformations of alpha,beta-epoxy peroxy tert-butyl esters into the alpha,beta-epoxy amides, alpha,beta-epoxy aldehydes, and gamma,delta-epoxy beta-keto esters are also reported. 相似文献
9.
Maruhashi K Kasahara Y Ohta K Wada T Ohta K Nakamura N Toma T Koizumi S Yachie A 《Journal of cellular biochemistry》2004,93(3):552-562
There has been increasing evidence suggesting the potent anti-inflammatory roles of heme oxygenase-1 (HO-1) in protecting renal tubular epithelial cells, vascular endothelial cells, and circulating monocytes. Based on these findings, novel therapeutic interventions have been proposed to control the expression of endothelial HO-1 levels to ameliorate various vascular diseases. We evaluated the effect of HO-1 gene transfer into an anchorage-dependent cell, ECV304. Effect of HO-1 production on the cell injury induced by hydrogen peroxide was evaluated after hemin stimulation and after HO-1 gene transfection. Morphological changes and the induction of various anti-apoptotic proteins were examined at the same time. Levels of HO-1 expression were variable in different clones of HO-1-transfected ECV304 cells. Among these, the clones with moderate levels of HO-1 expression were significantly more resistant to oxidative stress. In contrast, those with the highest levels of HO-1 exhibited paradoxically enhanced susceptibility to oxidative injury. Interestingly, the cell survival after oxidative stress was in parallel with the levels of Bcl-2 expression and of fibronectin receptor, alpha5 integrin. It is suggested from these results, that excessive HO-1 not only leads to enhanced cell injury, but also prolongs the repair process of the injured endothelial tissue. However, HO-1 reduces the oxidative cell injury and protects the endothelial cells, if its expression is appropriately controlled. Copyright 2004 Wiley-Liss, Inc. 相似文献
10.
11.
Carbonylated (oxidized) proteins are known to accumulate in the cerebral white matter (WM) and gray matter (GM) of patients with multiple sclerosis (MS). Although oxidative stress is necessary for carbonyl generation, it is the failure of the degradation systems that ultimately leads to the build-up of carbonylated proteins within tissues. In this study, we measured the activity of the 20S proteasome and other proteolytic systems in the cerebral WM and GM of 13 MS patients and 13 controls. We report that the activities of the three peptidases of the 20S proteasome (i.e. chymotrypsin-like, caspase-like and trypsin-like) in both MS-WM and MS-GM are greatly reduced. Interestingly, neither the amount of proteasome nor the levels of the catalytic subunits (β1, β2, and β5) are diminished in this disease. Proteins containing Lys-48 poly-ubiquitin also accumulate in MS tissues, indicating failure of the 26S proteasome as well. Levels of the regulatory caps 11S α and 19S are also lower in MS than in controls, suggesting that the activity of the more complex proteasomes may be reduced further. Finally, the activities of other proteases that might also remove oxidized proteins (calpain, cathepsin B, mitochondrial LonP) are not lessened in MS. Together, these studies suggest that direct inactivation of proteolytic centers in the 20S particle and/or the presence of specific inhibitors is the underlying cause of proteasomal dysfunction in MS. 相似文献
12.
13.
14.
Costameres, vinculin-containing structures found in skeletal and cardiac muscle, are thought to anchor the Z-discs of the peripheral myofibrils to the sarcolemma. Several lines of evidence indicate that two different sets of costameres, integrin- and N-cadherin-based, are present in cardiac muscles. In this study, immunoblot analysis was used to study the expression of N-cadherin, alpha-catenin, beta-catenin, vinculin, talin, and laminin in rat cardiac muscles at embryonic days 15 and 19, the day of birth (postnatal day 0), postnatal weeks 1, 2, 3, and 4, and in the adult. Double immunofluorescence microscopy was performed to study the spatial and temporal distribution of these two sets of costameres in rat cardiomyocytes. Costameric staining for N-cadherin, codistributed with beta-catenin, was strong from embryonic day 15 up to postnatal week 2, gradually decreased after postnatal week 3, and was undetectable at postnatal week 4 and in the adult. Confocal microscopy showed that N-cadherin colocalized with alpha-actinin at cortical myofibrils. Double-labeling of beta-catenin and talin indicated the coexistence of N-cadherin/catenin- and integrin/talin-based costameres in rat cardiac muscle. Although beta-catenin and vinculin were co-localized at the costamere of cardiomyocytes from embryonic day 15 to postnatal week 3, staining for beta-catenin or talin was mutually exclusive at all stages examined. These results demonstrate the simultaneous, but mutually exclusive, existence of N-cadherin/catenin- and integrin/talin-based costameres in rat cardiomyocytes between late embryonic stages and postnatal week 3, while only integrin/talin-based costameres were found in adult rats. The N-cadherin/catenin-based costameres in rat cardiac muscles may play a role in myofibrillogenesis similar to that of their counterparts in cultured cardiomyocytes. 相似文献
15.
Gap junctions are intercellular communicating channels responsible for the synchronized activity of cardiomyocytes. Recent studies have shown that the membrane-associated guanylate kinase protein, zonula occludens-1 (ZO-1) can bind to catenins in epithelial cells and act as an adapter for the transport of the connexin isotype, Cx43 during gap junction formation. The significance of catenins in the development of gap junctions and whether complexes between catenins and ZO-1 are formed in cardiomyocytes are not clear. In this study, immunofluorescence and confocal microscopy showed sequential redistribution of alpha-catenin, beta-catenin, ZO-1, and Cx43 to the plasma membrane when rat cardiomyocytes were cultured in low Ca(2+) (<5 microM) medium, then shifted to 1.8 mM Ca(2+) medium (Ca(2+) switch). Diffuse cytoplasmic staining of alpha-catenin, beta-catenin, ZO-1, and Cx43 was seen in the cytoplasm when cardiomyocytes were cultured in low Ca(2+) medium. Staining of alpha-catenin, beta-catenin, and ZO-1 was detected at the plasma membrane of cell-cell contact sites 10 min after Ca(2+) switch, whereas Cx43 staining was first detected, colocalized with ZO-1 at the plasma membrane, 30 min after Ca(2+) switch. Distinct junctional and extensive cytoplasmic staining of alpha-catenin, beta-catenin, ZO-1, and Cx43 was seen 2 h after Ca(2+) switch. Immunoprecipitation of Triton X-100 cardiomyocyte extracts using anti-beta-catenin antibodies showed that beta-catenin was associated with alpha-catenin, ZO-1, and Cx43 at 2 h after Ca(2+) switch. Intracellular application of antisera against alpha-catenin, beta-catenin, or ZO-1 by electroporation of cardiomyocytes cultured in low Ca(2+) medium inhibited the redistribution of Cx43 to the plasma membrane following Ca(2+) switch. These results suggest the formation of a catenin-ZO-1-Cx43 complex in rat cardiomyocytes and that binding of catenins to ZO-1 is required for Cx43 transport to the plasma membrane during the assembly of gap junctions. 相似文献
16.
The protective effect of erythropoietin (Epo) is based on its ability to reduce oxidation and to stabilize the cells. The aim of the study was to evaluate the influence of Epo on malonyl dialdehyde (MDA), intercellular adhesion molecule‐1 (ICAM‐1) (CD54) and platelet–endothelial cell adhesion molecule‐1 (PECAM‐1) (CD31) levels on human umbilical vein endothelial cells (HUVECs) stimulated by tumour necrosis factor‐α (TNF‐α). HUVECs were incubated with Epo (10–40 IU ml−1) or TNF‐α (10–40 ng ml−1) alone or preincubated with Epo (20 IU ml−1) and subsequently stimulated with TNF‐α (10–40 ng ml−1). MDA concentrations were measured using the high‐performance liquid chromatography, whereas ICAM‐1 and PECAM‐1 expressions were evaluated by flow cytometry. Incubation with Epo resulted in a decrease in MDA and the increased expressions of ICAM‐1 and PECAM‐1. Exposure to TNF‐α reflected an increase in MDA, ICAM‐1 and PECAM‐1 levels. These changes were inhibited by preincubation with Epo. The cytoprotective activity proven in this study points to new applications and therapeutic possibilities for Epo. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
17.
Meffre D Delespierre B Gouézou M Schumacher M Stein DG Guennoun R 《The Journal of steroid biochemistry and molecular biology》2007,104(3-5):293-300
Evidence that endogenous progesterone (PROG) is neuroprotective after traumatic brain injury (TBI) is supported by the findings that pseudopregnant female rats present less edema and achieve better functional recovery than do male rats. PROG in the nervous system may originate from steroidogenic glands or can be locally synthesized. 3β-Hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3β-HSD) is the key enzyme in the biosynthesis of PROG. In the present study, we investigated the effects of pseudopregnancy and TBI on brain 3β-HSD mRNA expression and on PROG levels. Twenty-four hours after bilateral contusion of the medial prefrontal cortex of rats, 3β-HSD mRNA expression was analyzed by in situ hybridization while PROG levels were measured by gas chromatography/mass spectrometry. Similar levels of 3β-HSD mRNA expression were observed in males and pseudopregnant females in the non-injured groups. At this time point, there was a significant decrease in the 3β-HSD mRNA expression in the contusion site within the frontal cortex in both males and pseudopregnant females. In all other regions analyzed, 3β-HSD mRNA expression was not affected by TBI and there was no difference between males and pseudopregnant females. The high decrease in the expression of the 3β-HSD mRNA in the lesion site 24 h after TBI suggests a possible decrease in locally synthesized PROG in lesion site without change in the other brain regions. This decrease has less impact in pseudopregnant females since they have high plasmatic and brain levels of PROG compared to males. 相似文献
18.
Cathepsin B is a cysteine proteinase, considered to have an important role in apoptosis, which is activated by D-galactosamine and tumor necrosis factor-alpha (D-GalN/TNF-alpha). Benzyloxycarbonyl-L-phenylalanine fluoromethyl ketone (Z-FA.FMK) is a cathepsin B inhibitor used in research on apoptotic pathways. The aim of this study was to investigate the role of Z-FA.FMK on apoptotic cell death, cell proliferation and liver damage induced by a D-GalN/TNF-alpha combination in mice. In the study, 1 h after administration of 8 mg/kg Z-FA.FMK by intravenous injection, D-GalN (700 mg/kg) and TNF-alpha (15 microg/kg) were administered by a single intraperitoneal injection. In the group given D-GalN/TNF-alpha, the following results were found: Degenerative changes in the liver tissue, significant increase in the number of both TUNEL and activated caspase-3-positive hepatocytes, a decrease in the number of PCNA-positive hepatocytes, an increase in lipid peroxidation (LPO) levels and a decrease in glutathione (GSH) and DNA levels in the liver tissue. In contrast, in the group given D-GalN/TNF-alpha and Z-FA.FMK, a decrease in the damage of the liver tissue, a significant decrease in TUNEL and activated caspase-3-positive hepatocytes, a significant increase in the number of PCNA-positive hepatocytes, a decrease in the LPO levels, an increase in GSH and DNA levels in the liver tissue were found. As a result, microscopic and biochemical evaluations indicate that Z-FA.FMK plays a protective role against liver injury induced by D-GalN/TNF-alpha and it has an inverse effect on hepatocyte apoptosis and proliferation in BALB/c mice. 相似文献
19.
The present study examined factors that may be involved in the development of hypoxic periventricular white matter damage in the neonatal brain. Wistar rats (1-day old) were subjected to hypoxia and the periventricular white matter (corpus callosum) was examined for the mRNA and protein expression of hypoxia-inducible factor-1alpha (HIF-1alpha), endothelial, neuronal and inducible nitric oxide synthase (eNOS, nNOS and iNOS), vascular endothelial growth factor (VEGF) and N-methyl-D-aspartate receptor subunit 1 (NMDAR1) between 3 h and 14 days after hypoxic exposure by real-time RT-PCR, western blotting and immunohistochemistry. Up-regulated mRNA and protein expression of HIF-1alpha, VEGF, NMDAR1, eNOS, nNOS and iNOS in corpus callosum was observed in response to hypoxia. NMDAR1 and iNOS expression was found in the activated microglial cells, whereas VEGF was localized to astrocytes. An enzyme immunoassay showed that the VEGF concentration in corpus callosum was significantly higher up to 7 days after hypoxic exposure. NO levels, measured by colorimetric assay, were also significantly higher in hypoxic rats up to 14 days after hypoxic exposure as compared with the controls. A large number of axons undergoing degeneration were observed between 3 h and 7 days after the hypoxic exposure at electron-microscopic level. Our findings point towards the involvement of excitotoxicity, VEGF and NO in periventricular white matter damage in response to hypoxia. 相似文献
20.
《Free radical research》2013,47(8):854-863
AbstractN-3 polyunsaturated fatty acids (n-3 PUFA) affect inflammatory processes. This study evaluated the effects of dietary supplementation with fish oil on hepatic ischemia-reperfusion (IR) injury in the rat. Parameters of liver injury (serum transaminases and histology) and oxidative stress (serum 8-isoprostanes and hepatic GSH and GSSG), were correlated with NF-κB DNA binding and FA composition and inflammatory cytokine release. N-3 PUFA supplementation significantly increased liver n-3 PUFA content and decreased n-6/n-3 PUFA ratios. IR significantly modified liver histology and enhanced serum transaminases, 8-isoprotanes and inflammatory cytokines, with net reduction in liver GSH levels and net increment in those of GSSG. Early increase (3 h) and late reduction (20 h) in NF-κB activity was induced. All IR-induced changes were normalized by n-3 PUFA supplementation. In conclusion, prevention of liver IR-injury was achieved by n-3 PUFA supplementation, with suppression of oxidative stress and recovery of pro-inflammatory cytokine homeostasis and NF-κB functionality lost during IR. 相似文献