首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
N-Ethylmaleimide sensitive factor (NSF) is an ATPase whose activity is important for intracellular trafficking. Previous genetic analysis of Drosophila NSF2 revealed a potential link between NSF and the actin cytoskeleton. The present study was therefore undertaken to specifically examine genetic interactions between the cytoskeleton and NSF. First, we tested for loss-of-function interaction and, indeed, we found that the combination of flies heterozygous for Act5C and NSF2 alleles led to reduced viability. Second, we expanded our gain-of-function approach to include cytoskeletal genes that were not included in our previous screen. Thirteen of 30 genes tested were found to suppress neuromuscular junction (NMJ) overgrowth. Altogether, these data support the idea that diverse NSF2 developmental and physiological phenotypes are related to disruption of the cytoskeleton and the large number of genes which can partially restore NMJ overgrowth and suggests that NSF may function near the top of the actin regulatory pathway.  相似文献   

3.
    
Actin remodeling has emerged as a critical process during synapse development and plasticity. Thus, understanding the regulatory mechanisms controlling actin organization at synapses is exceedingly important. Here, we used the highly plastic Drosophila neuromuscular junction (NMJ) to understand mechanisms of actin remodeling at postsynaptic sites. Previous studies have suggested that the actin‐binding proteins Spectrin and Coracle play a critical role in NMJ development and the anchoring of glutamate receptors most likely through actin regulation. Here, we show that an additional determinant of actin organization at the postsynaptic region is the PDZ protein Baz/Par‐3. Decreasing Baz levels in postsynaptic muscles has dramatic consequences for the size of F‐actin and spectrin domains at the postsynaptic region. In turn, proper localization of Baz at this site depends on both phosphorylation and dephosphorylation events. Baz phosphorylation by its binding partner, atypical protein kinase C (aPKC), is required for normal Baz targeting to the postsynaptic region. However, the retention of Baz at this site depends on its dephosphorylation mediated by the lipid and protein phosphatase PTEN. Misregulation of the phosphorylation state of Baz by genetic alterations in PTEN or aPKC activity has detrimental consequences for postsynaptic F‐actin and spectrin localization, synaptic growth, and receptor localization. Our results provide a novel mechanism of postsynaptic actin regulation through Baz, governed by the antagonistic actions of aPKC and PTEN. Given the conservation of these proteins from worms to mammals, these results are likely to provide new insight into actin organization pathways. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

4.
5.
    
The PGal4 transposon inserted upstream of the pan‐neural gene prospero (pros) causes several neural and behavioral defects in the Voila1 strain. The precise excision of the transposon simultaneously rescued all these defects whereas its unprecise excision created new prosV alleles, including the null allele prosV17. Here, we describe the relationship between the genetic structure of pros locus, larval locomotion, and larval gustatory response. These two behaviors showed varying degrees of variation depending upon the pros allele. We also found a good relation between behavioral alteration, the level of Pros protein in the embryo, and the degree of disorganization in the larval neuromuscular junction. These data suggest that the complete development of the nervous system requires a full complement of Pros, and that a gradual decrease in the levels of this protein can proportionally alter the development and the function of the nervous system. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 1–13, 2003  相似文献   

6.
Synaptic dysfunction is considered the primary substrate for the functional declines observed within the nervous system during age-related neurodegenerative disease. Dietary restriction (DR), which extends lifespan in numerous species, has been shown to have beneficial effects on many neurodegenerative disease models. Existing data sets suggest that the effects of DR during disease include the amelioration of synaptic dysfunction but evidence of the beneficial effects of diet on the synapse is lacking. Dynactin mutant flies have significant increases in mortality rates and exhibit progressive loss of motor function. Using a novel fly motor disease model, we demonstrate that mutant flies raised on a low calorie diet have enhanced motor function and improved survival compared to flies on a high calorie diet. Neurodegeneration in this model is characterized by an early impairment of neurotransmission that precedes the deterioration of neuromuscular junction (NMJ) morphology. In mutant flies, low calorie diet increases neurotransmission, but has little effect on morphology, supporting the hypothesis that enhanced neurotransmission contributes to the effects of diet on motor function. Importantly, the effects of diet on the synapse are not because of the reduction of mutant pathologies, but by the increased release of synaptic vesicles during activity. The generality of this effect is demonstrated by the observation that diet can also increase synaptic vesicle release at wild-type NMJs. These studies reveal a novel presynaptic mechanism of diet that may contribute to the improved vigor observed in mutant flies raised on low calorie diet.  相似文献   

7.
    
Mind-the-Gap (MTG) is required for neuronal induction of Drosophila neuromuscular junction (NMJ) postsynaptic domains, including glutamate receptor (GluR) localization. We have previously hypothesized that MTG is secreted from the presynaptic terminal to reside in the synaptic cleft, where it binds glycans to organize the heavily glycosylated, extracellular synaptomatrix required for transsynaptic signaling between neuron and muscle. In this study, we test this hypothesis with MTG structure-function analyses of predicted signal peptide (SP) and carbohydrate-binding domain (CBD), by introducing deletion and point-mutant transgenic constructs into mtg null mutants. We show that the SP is required for MTG secretion and localization to synapses in vivo. We further show that the CBD is required to restrict MTG diffusion in the extracellular synaptomatrix and for postembryonic viability. However, CBD mutation results in elevation of postsynaptic GluR localization during synaptogenesis, not the mtg null mutant phenotype of reduced GluRs as predicted by our hypothesis, suggesting that proper synaptic localization of MTG limits GluR recruitment. In further testing CBD requirements, we show that MTG binds N-acetylglucosamine (GlcNAc) in a Ca(2+)-dependent manner, and thereby binds HRP-epitope glycans, but that these carbohydrate interactions do not require the CBD. We conclude that the MTG lectin has both positive and negative binding interactions with glycans in the extracellular synaptic domain, which both facilitate and limit GluR localization during NMJ embryonic synaptogenesis.  相似文献   

8.
    
We investigated the effects of chronically lowered cyclic adenosine monophosphate (cAMP) on the morphology and physiology of the Drosophila larval neuromuscular junction, using two fly lines in which cAMP was significantly lower than normal in the nervous system: (a) transgenic flies in which the dunce (dnc) gene product was overexpressed in the nervous system, and (b) flies mutant for the rutabaga gene (rut1) which have reduced adenylyl cyclase activity. In comparison with controls, larvae with reduced cAMP exhibited a smaller number of synaptic varicosities. This effect was more pronounced in transgenic larvae, in which the reduction of neural cAMP was more pronounced. Synaptic transmission was also reduced in both cases, as evidenced by smaller excitatory junctional potentials (EJPs). Synaptic currents recorded from individual synaptic varicosities of the neuromuscular junction indicated almost normal transmitter release properties in transgenic larvae and a modest impairment in rut1 larvae. Thus, reduction in EJP amplitude in transgenic larvae is primarily due to reduced innervation, while in rut1 larvae it is attributable to the combined effects of reduced innervation and a mild impairment of transmitter release. We conclude that the major effect of chronically lowered cAMP is reduction of innervation rather than impairment of transmitter release properties. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 1–13, 1999  相似文献   

9.
    
Ribosomal S6 kinases (RSKs) are growth factor‐regulated serine‐threonine kinases participating in the RAS‐ERK signaling pathway. RSKs have been implicated in memory formation in mammals and flies. To characterize the function of RSK at the synapse level, we investigated the effect of mutations in the rsk gene on the neuromuscular junction (NMJ) in Drosophila larvae. Immunostaining revealed transgenic expressed RSK in presynaptic regions. In mutants with a full deletion or an N‐terminal partial deletion of rsk, an increased bouton number was found. Restoring the wild‐type rsk function in the null mutant with a genomic rescue construct reverted the synaptic phenotype, and overexpression of the rsk‐cDNA in motoneurons reduced bouton numbers. Based on previous observations that RSK interacts with the Drosophila ERK homologue Rolled, genetic epistasis experiments were performed with loss‐ and gain‐of‐function mutations in Rolled. These experiments provided evidence that RSK mediates its negative effect on bouton formation at the Drosophila NMJ by inhibition of ERK signaling. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

10.
    
Genetic analysis of the Drosophila larval neuromuscular junction has identified some of the key molecules that regulate synaptic plasticity. Among these molecules, the expression level of Fasciclin II (FasII), a homophilic cell adhesion molecule, is critically important for determining the final form of the neuromuscular junction. Genetic reduction of FasII expression by 50% yields more elaborate nerve terminals, while a greater reduction in expression, to 10% of wild‐type, yields a substantial reduction in the nerve terminal morphology. Importantly, regulation of FasII expression seems to be the final output for several genetic manipulations that transform NMJ morphology. In an effort to understand the importance of this regulatory pathway in the normal animal, we have undertaken studies to identify environmental cues that might be important for initiating FasII‐dependent changes in synaptic plasticity. Here we report on the relationship between larval population density and synaptic morphology, synaptic strength, and FasII levels. We raised Drosophila larvae under conditions of increasing population density and found an inverse exponential relationship between population density and the number of synaptic boutons, the number of branches, and the length of branches. We also observed population‐dependent alteration in FasII levels, with lower densities having less FasII at the synapse. The correlation between density and morphological change was abrogated in larvae constitutively expressing FasII, and in wild‐type larvae grown on soft culture medium. Together these data show that environmental cues can induce regulation of FasII. Interestingly, however, the quantal content of synaptic transmission was not different among the different population densities, suggesting that other factors contribute to maintaining synaptic strength at a defined level. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

11.
The neuromuscular connections of Drosophila are ideally suited for studying synaptic function and development. Hypotheses about cell recognition can be tested in a simple array of pre-and postsynaptic elements. Drosophila muscle fibers are multiply innervated by individually identifiable motoneurons. The neurons express several synaptic cotransmitters, including glutamate, proctolin, and octopamine, and are specialized by their synaptic morphology, neurotransmitters, and connectivity. During larval development the initial motoneuron endings grow extensively over the surface of the muscle fibers, and differentiate synaptic boutons of characteristic morphology. While considerable growth occurs postembryonically, the initial wiring of motoneurons to muscle fibers is accomplished during mid-to-late embryogenesis (stages 15–17). Efferent growth cones sample multiple muscle fibers with rapidly moving filopodia. Upon reaching their target muscle fibers, the growth cones rapidly differentiate into synaptic contacts whose morphology prefigures that of the larval junction. Mismatch experiments show that growth cones recognize specific muscle fibers, and can do so when the surrounding musculature is radically altered. However, when denied their normal targets, motoneurons can establish functional synapses on alternate muscle fibers. Blocking synaptic activity with either injected toxins or ion channel mutants does not derange synaptogenesis, but may influence the number of motor ending processes. The molecular mechanisms governing cellular recognition during synaptogenesis remain to be identified. However, several cell surface glycoproteins known to mediate cellular adhesion events in vitro are expressed by the developing synapses. Furthermore, enhancer detector lines have identified genes with expression restricted to small subsets of muscle fibers and /or motoneurons during the period of synaptogenesis. These observations suggest that in Drosophila a mechanism of target chemoaffinity may be involved in the genesis of stereotypic synaptic wiring. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Young-Jun Kim  Mihaela Serpe 《Fly》2013,7(3):146-152
L-glutamate is the primary neurotransmitter at excitatory synapses in the vertebrate CNS and at arthropod neuromuscular junctions (NMJs). However, the molecular mechanisms that trigger the recruitment of glutamate receptors at the onset of synaptogenesis and promote their stabilization at postsynaptic densities remain poorly understood. We have reported the discovery of a novel, evolutionary conserved molecule, Neto, essential for clustering of ionotropic glutamate receptors (iGluRs) at Drosophila NMJ. Neto is the first auxiliary subunit described in Drosophila and is the only non-channel subunit absolutely required for functional iGluRs. Here we review the role of Drosophila Neto in synapse assembly, its similarities with other Neto proteins and a new perspective on how glutamatergic synapses are physically assembled and stabilized.  相似文献   

13.
    
《Developmental neurobiology》2017,77(9):1101-1113
  相似文献   

14.
15.
16.
Crustacean muscles are innervated by phasic and tonic motor neurons that display differential physiology and have morphologically distinct synaptic terminals. Phasic motor neurons release much more transmitter per impulse and have filiform terminals, whereas tonic motor neurons release less transmitter and have larger terminals with prominent varicosities. Using an antibody raised against Drosophila frequenin (frq), a calcium‐binding protein that enhances transmitter release in Drosophila synaptic terminals, we found that frq‐like immunoreactivity is prominent in many of the phasic, but not tonic nerve endings of crayfish motor neurons. In contrast, synapsin‐ and dynamin‐like immunoreactivities are strongly expressed in both types of terminal. The immunocytochemical findings strongly suggested the presence of an frq‐like molecule in crayfish, and its differential expression indicated a possible modulatory role in transmitter release. Therefore, we cloned the cDNA sequences for the crayfish and lobster homologues of Drosophila frq. Crustacean frequenins are very similar in sequence to their Drosophila counterpart, and calcium‐binding regions (EF hands) are conserved. The widespread occurrence of frq‐like molecules and their differential localization in crayfish motor neurons indicate a significant role in physiology or development of these neurons. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 165–175, 1999  相似文献   

17.
18.
    
Alzheimer's disease is a neurodegenerative disorder characterized by progressive memory and cognitive decline that is associated with changes in synaptic plasticity and neuronal cell loss. Recent evidence suggests that some of these defects may be due to a loss of normal presenilin activity. Here, we have examined the effect of loss of Drosophila presenilin (psn) function on synaptic plasticity and learning. Basal transmitter release was elevated in psn mutants while both paired pulse synaptic plasticity and post-tetanic potentiation were impaired. These defects in synaptic strength and plasticity were not due to developmental defects in NMJ morphology. We also found that psn null terminals take up significantly less FM 4-64 than control terminals when loaded with high frequency stimulation, suggesting a defect in synaptic vesicle availability or mobilization. To determine whether these reductions in synaptic plasticity had any impact on learning, we tested the larvae for defects in associative learning. Using both olfactory and visual learning assays, we found that associative learning is impaired in psn mutants compared with controls. Both the learning and synaptic defects could be rescued by expression of a full length psn transgene suggesting the defects are specifically due to a loss of psn function. Taken together, these results provide the first evidence of learning and synaptic defects in a Drosophila psn mutant and strongly suggest a presynaptic role for presenilin in normal neuronal function.  相似文献   

19.
    
《Journal of morphology》2017,278(7):987-996
Drosophila melanogaster has recently emerged as model system for studying synaptic transmission and plasticity during adulthood, aging and neurodegeneration. However, still little is known about the basic neuronal mechanisms of synaptic function in the adult fly. Per se , adult Drosophila neuromuscular junctions should be highly suited for studying these aspects as they allow for genetic manipulations in combination with ultrastructural and electrophysiological analyses. Although different neuromuscular junctions of the adult fly have been described during the last years, a direct ultrastructural comparison with their larval counterpart is lacking. The present study was designed to close this gap by providing a detailed ultrastructural comparison of the larval and the adult neuromuscular junction of the ventrolongitudinal muscle. Assessment of several parameters revealed similarities but also major differences in the ultrastructural organisation of the two model neuromuscular junctions. While basic morphological parameters are retained from the larval into the adult stage, the analysis discovered major differences of potential functional relevance in the adult: The electron‐dense membrane apposition of the presynaptic and postsynaptic membrane is shorter, the subsynaptic reticulum is less elaborated and the number of synaptic vesicles at a certain distance of the presynaptic membrane is higher.  相似文献   

20.
The interaction between the cholinergic and purinergic receptors in the frog neuromuscular junction was studied using a standard microelectrode technique. The inhibitory action of an acetylcholine analog, carbachol, on transmitter release virtually disappeared when the releasing machinery was initially blocked by adenosine, indicating the existence of a functional cross-talk between the purinergic and cholinergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号