首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R A Wever 《Chronobiologia》1980,7(3):303-327
In special isolation units, circadian rhythms of human subjects have been investigated under the influence of artificial 24-h Zeitgebers, with 6-h advance and 6-h delay shifts of the Zeitgeber simulating time zone shifts. In most cases, the biological rhythms follow the Zeitgeber shifts in the course of several days: in rare cases, advancing Zeitgeber shifts are followed by delaying shifts of the biological rhythms, either of all variables or, partitioning, of only some of the variables. The rhythm of activity is re-entrained after both Zeitgeber shifts within a few days, independent of the shift direction. The rhythm of rectal temperature needs more time for re-entrainment than the activity rhythm; the rate of re-entrainment is consistently higher after advance than after delay shifts ('direction asymmetry'). Mean value and amplitude of the rectal temperature rhythm are, for some days, reduced after the advance but not after the delay Zeitgeber shift; among the different subjects, the reduction in amplitude is significantly correlated with the direction asymmetry. The rhythm of psychomotor performance (computation speed) re-entrains in parallel to that of rectal temperature; i.e. the performance level is decreased after advance but not after delay shifts. The direction asymmetry in the re-entrainment rates seems to contradict findings in flight experiments where this rate is mostly higher after westward than after eastward flights. Careful considerations, however, show that differences in the re-entrainment behavior after real and simulated time zone shifts disappear when the experimental designs are approximated and when identical procedures of analyzing the data are applied. The results of the time shift experiments are, in all respects tested, in agreement with theoretical postulations; hence, they confirm once more properties of the circadian system deduced earlier. On the other hand, the results are of practical importance since they state significant correlations between the re-entrainment behavior and rhythm parameters measured before the Zeitgeber shifts; this behavior, therefore, can be predicted from data obtained already before the Zeitgeber has been changed in any way: The duration of re-entrainment is correlated with the amplitude, and the decrement in performance with the phase of the rectal temperature rhythm. These practical implications may also apply to shift work.  相似文献   

2.
Effects of temperature and temperature changes on circadian clocks in cyanobacteria, unicellular algae, and plants, as well as fungi, arthropods, and vertebrates are reviewed. Periodic temperature with periods around 24 h even in the low range of 1-2 degrees C (strong Zeitgeber effect) can entrain all ectothermic (poikilothermic) organisms. This is also reflected by the phase shifts-recorded by phase response curves (PRCs)-that are elicited by step- or pulsewise changes in the temperature. The amount of phase shift (weak or strong type of PRC) depends on the amplitude of the temperature change and on its duration when applied as a pulse. Form and position of the PRC to temperature pulses are similar to those of the PRC to light pulses. A combined high/low temperature and light/dark cycle leads to a stabile phase and maximal amplitude of the circadian rhythm-when applied in phase (i.e., warm/light and cold/dark). When the two Zeitgeber cycles are phase-shifted against each other the phase of the circadian rhythm is determined by either Zeitgeber or by both, depending on the relative strength (amplitude) of both Zeitgeber signals and the sensitivity of the species/individual toward them. A phase jump of the circadian rhythm has been observed in several organisms at a certain phase relationship of the two Zeitgeber cycles. Ectothermic organisms show inter- and intraspecies plus seasonal variations in the temperature limits for the expression of the clock, either of the basic molecular mechanism, and/or the dependent variables. A step-down from higher temperatures or a step-up from lower temperatures to moderate temperatures often results in initiation of oscillations from phase positions that are about 180 degrees different. This may be explained by holding the clock at different phase positions (maximum or minimum of a clock component) or by significantly different levels of clock components at the higher or lower temperatures. Different permissive temperatures result in different circadian amplitudes, that usually show a species-specific optimum. In endothermic (homeothermic) organisms periodic temperature changes of about 24 h often cause entrainment, although with considerable individual differences, only if they are of rather high amplitudes (weak Zeitgeber effects). The same applies to the phase-shifting effects of temperature pulses. Isolated bird pineals and rat suprachiasmatic nuclei tissues on the other hand, respond to medium high temperature pulses and reveal PRCs similar to that of light signals. Therefore, one may speculate that the self-selected circadian rhythm of body temperature in reptiles or the endogenously controlled body temperature in homeotherms (some of which show temperature differences of more than 2 degrees C) may, in itself, serve as an internal entraining system. The so-called heterothermic mammals (undergoing low body temperature states in a daily or seasonal pattern) may be more sensitive to temperature changes. Effects of temperature elevation on the molecular clock mechanisms have been shown in Neurospora (induction of the frequency (FRQ) protein) and in Drosophila (degradation of the period (PER) and timeless (TIM) protein) and can explain observed phase shifts of rhythms in conidiation and locomotor activity, respectively. Temperature changes probably act directly on all processes of the clock mechanism some being more sensitive than the others. Temperature changes affect membrane properties, ion homeostasis, calcium influx, and other signal cascades (cAMP, cGMP, and the protein kinases A and C) (indirect effects) and may thus influence, in particular, protein phosphorylation processes of the clock mechanism. The temperature effects resemble to some degree those induced by light or by light-transducing neurons and their transmitters. In ectothermic vertebrates temperature changes significantly affect the melatonin rhythm, which in turn exerts entraining (phase shifting) functions.  相似文献   

3.
Summary The circadian rhythm of sensitivity in the median eyes ofAndroctonus australis L. can be entrained by exposure of the lateral eyes to a 24-h light-dark rhythm. Presentation of the Zeitgeber to only the anteriormost one of the lateral eyes sufficed (Fig. 1). However, with illumination of an entire group of lateral eyes (Fig. 2), entrainment was obtained at extremely low light intensities — white light at luminance levels of 10–4cd · m–2 (=2.5 · 10–4 lux, cf. Methods).The relatively less marked circadian rhythm of lateral-eye sensitivity is probably controlled via the optic nerve supplying these eyes (Fig. 4).Supported by the Deutsche Forschungsgemeinschaft (F1 77/5-6 and F1 77/7 Schwerpunktprogramm: Biologie der Zeitmessung)  相似文献   

4.
We recorded circadian locomotor activity rhythms of house sparrows (Passer domesticus) exposed to low-amplitude light-dark cycles (2∶1 lux) with periods of 22.5 or 24.5 h. Under these conditions the circadian rhythms of the majority of the birds were not synchronized by the light cycle but either free-ran or showed relative coordination. However, when melatonin was administered continuously via subcutaneous silastic implants the rhythms became synchronized. It is proposed that melatonin facilitates synchronization either by weakening the circadian oscillatory system thereby increasing its range of entrainment, or by enhancing circadian sensitivity to the light Zeitgeber. In general, the results suggest that melatonin, besides its well-known phasic effects on the circadian system also has important tonic effects modifying the ease with which circadian systems can be entrained.  相似文献   

5.
Most of the extensive literature concerning the resynchronization of circadian rhythms after a Zeitgeber shift is devoted to the dependence of resynchronization on the mode of the shift and the strength of the Zeitgeber, as well as on the circadian function investigated. Ontogenetic influences have rarely been investigated. Therefore, we studied the resynchronization of several circadian rhythms in juvenile and adult female laboratory mice. We present here the results concerning the corticosterone rhythm. The daily rhythms were determined as transverse profiles (2-h intervals) before as well as 3, 7, and 14 days after an 8-h phase delay of the light/dark cycle produced by a single prolongation of dark time. The corticosterone concentration in serum was determined radioimmunologically. In the control animals the daily patterns were bimodal, with main maxima at the end of the light time and secondary ones just after lights on. Ontogenetic differences were small. In adult mice the amplitude was slightly increased due to an increase in the maximum values, and the time of highest hormone concentrations was slightly phase advanced. In juvenile mice, a distinct daily pattern with a phase position in relation to the light/dark cycle corresponding to that of control animals was present on the 3rd day after the Zeitgeber shift. The daily mean as well as the minimum and maximum values increased initially and reached the values of control animals during the second week. In adult animals, a pronounced daily rhythm with the normal phase position was present only at the 7th postshift day. The amplitude, daily mean, and maximum values were decreased, and the minimum values were increased. The initial values were not reached even after 2 weeks. The results show that resynchronization was faster in juvenile mice compared with adult mice. As a possible cause for the observed age-related differences, a not yet stabilized phase-coupling between various circadian rhythms is supposed.  相似文献   

6.
Most of the extensive literature concerning the resynchronization of circadian rhythms after a Zeitgeber shift is devoted to the dependence of resynchronization on the mode of the shift and the strength of the Zeitgeber, as well as on the circadian function investigated. Ontogenetic influences have rarely been investigated. Therefore, we studied the resynchronization of several circadian rhythms in juvenile and adult female laboratory mice. We present here the results concerning the corticosterone rhythm. The daily rhythms were determined as transverse profiles (2-h intervals) before as well as 3, 7, and 14 days after an 8-h phase delay of the light/dark cycle produced by a single prolongation of dark time. The corticosterone concentration in serum was determined radioimmunologically. In the control animals the daily patterns were bimodal, with main maxima at the end of the light time and secondary ones just after lights on. Ontogenetic differences were small. In adult mice the amplitude was slightly increased due to an increase in the maximum values, and the time of highest hormone concentrations was slightly phase advanced. In juvenile mice, a distinct daily pattern with a phase position in relation to the light/dark cycle corresponding to that of control animals was present on the 3rd day after the Zeitgeber shift. The daily mean as well as the minimum and maximum values increased initially and reached the values of control animals during the second week. In adult animals, a pronounced daily rhythm with the normal phase position was present only at the 7th postshift day. The amplitude, daily mean, and maximum values were decreased, and the minimum values were increased. The initial values were not reached even after 2 weeks. The results show that resynchronization was faster in juvenile mice compared with adult mice. As a possible cause for the observed age-related differences, a not yet stabilized phase-coupling between various circadian rhythms is supposed.  相似文献   

7.
Cathemeral activity, in which the animals' motor activity is almost evenly distributed throughout the dark and the light portion of the day, has been described in various lemur genera (Eulemur, Hapalemur) and in the owl monkey Aotus azarai of the Argentinean Chaco. Proximate and ultimate factors responsible for this behaviour are still being debated. However, the chronobiological background of the behaviour has largely been ignored. We studied E. fulvus albifrons and A. a. boliviensis under controlled laboratory conditions to assess whether their activity rhythm is endogenously regulated by a circadian timing system that obeys general rules found in other mammals, or whether there are characteristic differences. To this end, we carried out long-term activity recordings on individuals of both subspecies kept under constant light and various light-dark cycles (LDs) using a PC-controlled electro-acoustic device in combination with telemetric body temperature measurements. Both subspecies developed free-running circadian activity and body temperature rhythms with periods deviating from 24 h in constant light, and LDs turned out to be the most efficient Zeitgeber synchronizing this endogenous rhythmicity to the external 24-hour day. The luminosity prevailing during the dark time of the LD had a decisive effect on levels of activity in the lemurs and induced strong masking effects on their circadian activity pattern. The results indicate that, from a chronobiological viewpoint, both species should be considered as dark active primates. Their diel activity rhythm is regulated by a normally responding circadian timing system and strong activity inhibiting or enhancing direct effects of light intensity. Thus, hypotheses on proximate and/or ultimate factors of cathemerality in primates must also consider its circadian background.  相似文献   

8.
Significant circadian rhythms in heat shock gene expression were observed in a prokaryotic species (Synechocystis). In eukaryotes, in contrast, several heat shock genes (constitutive and inducible) were shown to be constantly expressed. A few cases of circadian expression of heat shock proteins (HSPs), however, have been reported. Significant circadian changes of thermotolerance were observed in yeast and several plant species. Higher thermo-tolerance can be attributed to a higher abundance of HSPs, but also to other adaptive mechanisms. Zeitgeber effects of temperature changes can be explained on the basis of their direct effects on the state variables of the clock gene (per, frq) expression and its negative feedback loop. Effects of increased HSP concentrations, as observed after heat shock, but also after light and serotonin (5HT), appear possible, in particular with respect to nuclear localization of the clock (PER) protein, but these effects have not been documented yet. Thus, the role of HSPs in the circadian clock system is little understood and, from our point of view, deserves more attention. (Chronobiology International, 13(4), 239-250, 1996)  相似文献   

9.
Thought-provoking experimental evidence suggests that perinatal light exposure may imprint circadian clocks with lasting effects on the alignment and the stability of circadian rhythms later in life. Assuming that exposure to light early in life could determine the stability of an individual's circadian system later in life, the present hypothesis proposes that time of year and location of birth (i.e., season and latitude) and thus differential Zeitgeber strengths may be key contributors to a person's susceptibility of developing mood disorders like seasonal affective disorder (SAD) and common internal cancers such as those of breast and prostate. Consequently, when and where people are born might critically predispose them to both mood disorders and internal cancers, and may affect the onset and course of such illnesses. This paper develops a causal framework and presents suggestions for rigorous tests of the associated corollary and predictions. It does not escape our attention that links between the perinatal Zeitgeber strength of light and its effects on the stability of circadian systems later in life could have a role to play in affecting long-term health beyond cancer and mood disorders - mostly in adults but also in children.  相似文献   

10.
Light influences the daily patterning of behavior by entraining circadian rhythms and through its acute effects on activity levels (masking). Mechanisms of entrainment are quite similar across species, but masking can be very different. Specifically, in diurnal species, light generally increases locomotor activity (positive masking), and in nocturnal ones, it generally suppresses it (negative masking). The intergeniculate leaflet (IGL), a subdivision of the lateral geniculate complex, receives direct retinal input and is reciprocally connected with the primary circadian clock, the suprachiasmatic nucleus (SCN). Here, we evaluated the influence of the IGL on masking and the circadian system in a diurnal rodent, the Nile grass rat (Arvicanthis niloticus), by determining the effects of bilateral IGL lesions on general activity under different lighting conditions. To examine masking responses, light or dark pulses were delivered in the dark or light phase, respectively. Light pulses at Zeitgeber time (ZT) 14 increased activity in control animals but decreased it in animals with IGL lesions. Dark pulses had no effect on controls, but significantly increased activity in lesioned animals at ZT0. Lesions also significantly increased activity, primarily during the dark phase of a 12:12 light/dark cycle, and during the subjective night when animals were kept in constant conditions. Taken together, our results suggest that the IGL plays a vital role in the maintenance of both the species-typical masking responses to light, and the circadian contribution to diurnality in grass rats.  相似文献   

11.
The circadian timing system (CTS) provides internal and external temporal coordination of an animal's physiology and behavior. In mammals, the generation and coordination of these circadian rhythms is controlled by a neural pacemaker, the suprachiasmatic nucleus (SCN), located within the hypothalamus. The pacemaker is synchronized to the 24 hour day by time cues (zeitgebers) such as the light/dark cycle. When an animal is exposed to an environment without time cues, the circadian rhythms maintain internal temporal coordination but exhibit a "free-running" condition in which the period length is determined by the internal pacemaker. Maintenance of internal and external temporal coordination are critical for normal physiological and psychological function in human and non-human primates. Exposure to altered gravitational environments has been shown to affect the amplitude, mean, and timing of circadian rhythms in species ranging from unicellular organisms to man. However, it has not been determined whether altered gravitational fields have a direct effect on the neural pacemaker, or affect peripheral physiological systems that express these circadian parameters. In previous studies, the ability of a stimulus to phase shift circadian rhythms was used to determine whether a stimulus has a direct effect on the neural pacemaker. The present experiment was performed in order to determine whether acute exposure to a hyperdynamic field could phase shift circadian rhythms.  相似文献   

12.
The circadian timing system in mammals is composed of a master pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus and slave clocks in most peripheral cell types. The phase of peripheral clocks can be completely uncoupled from the SCN pacemaker by restricted feeding. Thus, feeding time, while not affecting the phase of the SCN pacemaker, is a dominant Zeitgeber for peripheral circadian oscillators. Here we show that the phase resetting in peripheral clocks of nocturnal mice is slow when feeding time is changed from night to day and rapid when switched back from day to night. Unexpectedly, the inertia in daytime feeding-induced phase resetting of circadian gene expression in liver and kidney is not an intrinsic property of peripheral oscillators, but is caused by glucocorticoid signaling. Thus, glucocorticoid hormones inhibit the uncoupling of peripheral and central circadian oscillators by altered feeding time.  相似文献   

13.
Summary Evidence presented in this paper indicates that a robust circadian rhythm in the frequency of neural activity can be recorded from the central nervous system of intact cockroaches, Leucophaea maderae. This rhythmicity was abolished by optic lobe removal. Spontaneous neural activity was then used as an assay to demonstrate that the optic lobe is able to generate circadian oscillations in vitro. These results provide direct evidence that the cockroach optic lobe is a self-sustained circadian oscillator capable of generating daily rhythms in the absence of neural or hormonal communications with the rest of the organism.Abbreviations CNS central nervous system - DD constant dark - LD light/dark cycle - SCN suprachiasmatic nucleus - ZT Zeitgeber time  相似文献   

14.
Circadian rhythms of locomotor activity of the desert beetles T.gigas were entrained with skeleton photoperiods (2x2 hr per circadian cycle 30 lx green LED light pulses). The Zeitgeber period was stepwise reduced by 1 hr down to 22 hr or increased up to 26 hr. Within the range of entrainment, the phase angle Ψ of a circadian rhythm with respect to light depends upon the period of Zeitgeber differently for the morning (M) and evening (E) peak: M is easier to advance, while E is easier to delay. Beyond the range of entrainment both peaks became free-running with some relative coordination. Masking (direct stimulation of activity by light) occurred only during the subjective night, and never in subjective day. In few cases one of two peaks became free-running while its counterpart remained entrained, suggesting that each of the two peaks has its own visual input and can be entrained by light. These results are in agreement with the difference in the PRC shape for the M and E peaks, and support the hypothesis that M and E peaks are controlled by two functionally separate oscillators that have polar different properties, and are extremely strongly mutually coupled with phases locked at about 180°.  相似文献   

15.
The endogenous circadian timing system has evolved to synchronize an organism to periodically recurring environmental conditions. Those external time cues are called Zeitgebers. When entrained by a Zeitgeber, the intrinsic oscillator adopts a fixed phase relation to the Zeitgeber. Here, we systematically study how the phase of entrainment depends on clock and Zeitgeber properties. We combine numerical simulations of amplitude-phase models with predictions from analytically tractable models. In this way we derive relations between the phase of entrainment to the mismatch between the endogenous and Zeitgeber period, the Zeitgeber strength, and the range of entrainment. A core result is the “180° rule” asserting that the phase varies over a range of about 180° within the entrainment range. The 180° rule implies that clocks with a narrow entrainment range (“strong oscillators”) exhibit quite flexible entrainment phases. We argue that this high sensitivity of the entrainment phase contributes to the wide range of human chronotypes.  相似文献   

16.
Photic entrainment of the circadian clock: from Drosophila to mammals.   总被引:2,自引:0,他引:2  
Entrainment is as fundamental to an organism's circadian timing as are the molecular mechanisms involved in the functioning of the intracellular clock oscillator. In nature, one of the principle, although not the only, circadian entraining stimulus (Zeitgeber) is provided by the daily light--dark cycles. In animals, the visual processing apparatus alone is inadequate to accomplish the task of transducing circadian photic signals to the clockwork machinery. In fact, it is ever more appreciated by circadian biologists that organisms as divergent as plants and mammals have evolved a wonderfully complex array of partly redundant specializations which can guarantee the precise alignment of biological and environmental time. Research in circadian biology is cruising at such a rate that attempts to review the state of the art can only hope, at best, to provide a snapshot of the speeding cruiser from its wake. This paper will hopefully provide a reasonably sharp portrayal of what is at hand.  相似文献   

17.
18.
Breast cancer incidence increases rapidly as societies industrialize. Many changes occur during the industrialization process, one of which is a dramatic alteration in the lighted environment from a sun-based system to an electricity-based system. Increasingly, the natural dark period at night is being seriously eroded for the bulk of humanity. Based on the fact that light during the night can suppress melatonin, and also disrupt the circadian rhythm, it was proposed in 1987 that increasing use of electricity to light the night accounts in part for the rising risk of breast cancer globally. Predictions from the theory include: non-day shift work increases risk, blindness lowers risk, long sleep duration lowers risk, and population level community nighttime light level co-distributes with breast cancer incidence. Thus far, studies of these predictions are consistent in support of the theory. A new avenue of research has been on function of circadian genes and whether these are related to breast cancer risk. In particular, a length variant of Per3 (5-VNTR) has been associated with increased risk in young women, and this same 5-VNTR variant has also been found to predict morning diurnal type and shorter sleep duration compared to the 4-VNTR variant. An important question is how an effect of light-at-night (LAN) exposure on breast cancer risk might be modified by polymorphisms and/or epigenetic alterations in the circadian genes, and conversely whether light-at-night exposure (e.g., shift work) can induce deleterious epigenetic changes in these genes.  相似文献   

19.
A specially designed apparatus that can simulate the waveform of the dawn or dusk signal at any latitude and any day of the year has been shown to phase shift the circadian pacemaker in rodents and primates at a fraction of the illuminance previously used. Until recently, it was considered that rather high illuminances or rather long exposure episodes to room light were necessary to phase shift human circadian rhythms. This experiment shows that, under controlled conditions of a modified constant routine protocol, a single dawn signal is sufficient to phase advance the timing of the onset of secretion of the pineal hormone melatonin. The significant phase advance of salivary melatonin of 20 minutes, which is enhanced to 34 minutes after three consecutive dawn signals, is small, but appears to be of sufficient magnitude to entrain the human circadian pacemaker, which has an endogenous period of about 24.2h. (Chronobiology International, 17(5), 659-668, 2000)  相似文献   

20.
A specially designed apparatus that can simulate the waveform of the dawn or dusk signal at any latitude and any day of the year has been shown to phase shift the circadian pacemaker in rodents and primates at a fraction of the illuminance previously used. Until recently, it was considered that rather high illuminances or rather long exposure episodes to room light were necessary to phase shift human circadian rhythms. This experiment shows that, under controlled conditions of a modified constant routine protocol, a single dawn signal is sufficient to phase advance the timing of the onset of secretion of the pineal hormone melatonin. The significant phase advance of salivary melatonin of 20 minutes, which is enhanced to 34 minutes after three consecutive dawn signals, is small, but appears to be of sufficient magnitude to entrain the human circadian pacemaker, which has an endogenous period of about 24.2h. (Chronobiology International, 17(5), 659–668, 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号