首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galactose inhibits auxin-induced growth of Avena coleoptiles by at least two mechanisms. First, it inhibits auxin-induced H(+)-excretion needed for the initiation of rapid elongation. Galactose cannot be doing so by directly interfering with the ATPase since fusicoccin-induced H(+)-excretion is not affected. Secondly, galactose inhibits long-term auxin-induced growth, even in an acidic (pH 4.5) solution. This may be due to an inhibition of cell wall synthesis. However, galactose does not reduce the capacity of walls to be loosened by H+, given exogenously or excreted in response to fusicoccin.  相似文献   

2.
3.
4.
5.
Summary Aiming to elucidate the possible involvement of pectins in auxin-mediated elongation growth the distribution of pectins in cell walls of maize coleoptiles was investigated. Antibodies against defined epitopes of pectin were used: JIM 5 recognizing pectin with a low degree of esterification, JIM 7 recognizing highly esterified pectin and 2F4 recognizing a pectin epitope induced by Ca2+. JIM 5 weakly labeled the outer third of the outer epidermal wall and the center of filled cell corners in the parenchyma. A similar labeling pattern was obtained with 2F4. In contrast, JIM 7 densely labeled the whole outer epidermal wall except the innermost layer, the middle lamellae, and the inner edges of open cell corners in the parenchyma. Enzymatic de-esterification with pectin methylesterase increased the labeling by JIM 5 and 2F4 substantially. A further increase of the labeling density by JIM 5 and 2F4 and an extension of the labeling over the whole outer epidermal wall could be observed after chemical de-esterification with alkali. This indicates that both methyl- and other esters exist in maize outer epidermal walls. Thus, in the growth-controlling outer epidermal wall a clear zonation of pectin fractions was observed: the outermost layer (about one third to one half of wall thickness) contains unesterified pectin epitopes, presumably cross-linked by Ca2+ extract. Tracer experiments with3H-myo-inositol showed rapid accumulation of tracer in all extractable pectin fractions and in a fraction tightly bound to the cell wall. A stimulatory effect of IAA on tracer incorporation could not be detected in any fraction. Summarizing the data a model of the pectin distribution in the cell walls of maize coleoptiles was developed and its implications for the mechanism of auxin-induced wall loosening are discussed.Abbreviations CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acid - CWP cell-wall pellet - IAA indole-3-acetic acid - LSE low-salt extract - TCA trichloroacetic acid; Tris tris-(hydroxy-methyl)aminoethane  相似文献   

6.
The effect of plasma membrane alteration caused by osmotic shockof different strengths on the auxin-induced responses of Avenacoleoptile cells was observed. Osmotic shock brought about by0.5–0.7 M mannitol solution for 10 or 30 min, followedby phosphate-buffer (1 mM, pH 6.0) treatment for 10 min at 4?Ccaused no significant inhibition of auxin-induced cell extension.The osmotic shock did not affect auxin-induced cell wall looseningrepresented by stress-relaxation time and a decrease in thenoncellulosic glucose level of the cell wall. The shock causedonly a temporary inhibition of transmembrane potential and noinhibition of oxygen consumption. However, it inhibited auxin-stimulatedH+ secretion which was reversed by 0.1 mM CaCl2. We concludedthat the Osmotic shock may partly modify the plasma membranerelated to the hydrogen ion pump which interacts with auxin,but this modification which is reflected little by the transmembranepotential and cellular metabolism, is not closely related toauxin-induced cell wall loosening and thus cell extension inAvena coleoptiles. 3 Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan (Received February 17, 1978; )  相似文献   

7.
The possibility of a biphasic response to auxin in rice coleoptileshas been investigated. The action of cytokinins and nojirimycinon the auxin-induced growth can not be used to distinguish betweenthe two different growth phases in response to auxin in ricecoleoptiles. (Received November 2, 1978; )  相似文献   

8.
David L. Rayle 《Planta》1973,114(1):63-73
Summary The dose response curve for hydrogen-ion-induced extension growth in Avena coleoptile segments has been reinvestigated. The previously published optimum (pH 3.0) is in error by about two orders of magnitude. The correct optimum is around pH 5.0. This discrepancy is thought to be due to the impermeable nature of the cuticle to hydrogen ions. In the present study the cuticular barrier to H+ entry was circumvented by using coleoptile segments from which the epidermis with cuticle were physically removed. Using such peeled coleoptile sections, it was also found that auxin can rapidly (20–30 min) initiate H+ secretion and that the magnitude of auxin-induced secretion is sufficient to initiate considerable cell-extension growth. Furthermore, it is shown that the secretion response is specific for active auxins, and inhibited by agents which inhibit auxin-induced growth (dinitrophenol, abscisic acid, cycloheximide, valinomycin and others). These results make it very likely that H+ secretion is responsible, at least in part, for the initiation of auxin-induced cell wall loosening and extension growth.  相似文献   

9.
The physiology of the auxin-induced 10,000-fold increase in light sensitivity of a phytochrome-mediated growth response (Shinkle and Briggs, 1984 Proc Natl Acad Sci USA 81: 3742-3746) has been characterized in subapical coleoptile sections from dark-grown oat (Avena sativa L. cv Lodi) seedlings. Six micromolar indole-3-acetic acid (IAA) must be present for 1 hour before to 2 hour after irradiation in order to confer maximal sensitivity to light. The direct effect of IAA on growth can be separated from its effect on light sensitivity. Several classes of synthetic auxins will substitute for IAA in inducing an increase in sensitivity to light, as will both the phytotoxin fusicoccin and treatment of sections with pH 4.5 buffer. The increase in sensitivity to light induced by 6 micromolar IAA is completely inhibited by buffering the sections at pH 5.9 with 30 millimolar 2-(N-morpholino)ethanesulfonic acid. These findings suggest that the capacity to respond to very low fluences of light is regulated by extracellular pH.  相似文献   

10.
11.
There are several differences between monocotyledonous and dicotyledonous plants. The sensitivity towards added galactose which inhibits auxin-induced coleoptile elongation but not stem elongation is one of the conspicuous differences between the two types of plants. InAvena coleoptile segments, galactose, probably as galactose-1-phosphate, inhibits the formation of UDP-glucose from glucose-l-phosphate. The inhibition of UDP-glucose formation due to galactose is not found inPisum epicotyl segments. InAvena UTP: α-D-glucose-1-phosphate uridyltransferase (EC 2.7.7.9) which catalyzes the reaction from glucose-1-phosphate to UDP-glucose seems to be inhibited by galactose-1-phosphate.  相似文献   

12.
The acid-growth response {(AGR) induced by acidic buffer (pH4) in abraded maize (Zea mays L.) coleoptile segments can becompletely inhibited within a few minutes by inhibitors of thehaemoprotein function (KCN, Na-azide) or ionophores collapsingthe proton gradients across membranes (carbonyl cyanide m-chlorophenylhydrazone, monensin). These substances also interfere with theacid-mediated increase in cell-wall extensibility measured witha constant-load extensiometer in vivo in turgid or non-turgidsegments, but have no effect on the extensibility of the cellwalls measured in vitro with frozen/thawed segments. The inhibitorsdo not cause an alkalinization of the apoplastic solution ora decrease in the osmotic pressure of the cell sap of acid-treatedsegments. In contrast, inhibitors of ATP synthesis (N, N'-dicyclohexylcarbodiimide,diethylstilbestrol), which arrest auxinmediated growth in asimilar way to KCN, have no effect on AGR. Removal of 02 inhibitsgrowth at pH 4 by about 25%; the anoxia-insensitive part ofthe AGR can be fully inhibited by azide. Diminishing the membranepotential with valinomycin has no effect on AGR. It is concludedthat the AGR is controlled by protoplastic functions, possiblylocalized in the plasma membrane, which are lost when the cellsare killed. The isolated cell wall may not represent a sufficientmodel system for the biochemical mechanism of AGR. Key words: Acid-growth response, cell wall, coleoptile, growth, maize coleoptile  相似文献   

13.
Polyclonal antibodies were raised in rabbits in response to the administration of purified exo- and endoglucanases extracted from cell walls of maize (Zea mays L. B37 × Mo17) coleoptiles. Since the antibodies formed specific conjugates when challenged with the glucanase antigens in immunoblot assays they were employed to evaluate the participation of glucanases in tissue growth. Indole-3-acetic acid induced cell elongation of abraded coleoptile segments was inhibited when the antibodies were supplied as a short term pretreatment (25-200 microgram/milliliter of serum protein). The extent of inhibition of IAA induced cell elongation was additive when endo- and exoglucanase antibodies were applied together. The results suggest that both enzymes have a role in mediating IAA-induced cell elongation. Pretreatment with exo- and endoglucanases antibodies also inhibited IAA induced degradation of noncellulosic β-d-glucans and the increased level of cellulosic polymers in maize coleoptiles. Antibodies also inhibited the expression of the autohydrolytic degradation of glucans in isolated cell walls. The extent of inhibition was dependent on the antibody concentration applied. The results support the contention that enzymatic processes mediated by exo- and endoglucanases are responsible for cell wall autolytic reactions and that these reactions are linked to the mechanism for expressing auxin induced cell elongation in maize coleoptiles.  相似文献   

14.
15.
The role of cell wall synthesis in sustained auxin-induced growth   总被引:2,自引:0,他引:2  
The dependence of auxin-induced growth on continued cell wall synthesis was investigated in stem segments of etiolated pea ( Pisum sativum L. cv. Alaska) seedlings using the cell wall synthesis inhibitors monensin and 2,6-dichlorobenzonitrile (DCB). Monensin (5 μ M ) potently inhibited indole-3-acetic acid (IAA)-induced growth, particularly during the second hour of treatment, whereas growth in fusicoccin (FC) was inhibited much less effectively. Incorporation of [14C]-glucose into both matrix and cellulose fractions of the wall showed a sharp increase beginning after about 60 min, this rise being promoted by both IAA and FC. Monensin inhibited this rise in incorporation of label and completely removed the promotion of this by IAA, although some promotion by FC remained. Monensin inhibited incorporation into cellulose in a manner similar to that into matrix, but the use of the apparently specific cellulose synthesis inhibitor DCB showed that cellulose synthesis could be strongly inhibited without effect on growth, at least in the short term. The results support the view that sustained auxin-induced growth depends upon the incorporation of new matrix cell wall components into the wall.  相似文献   

16.
IAA-induced proton excretion in peeled or abraded oat ( Avena saliva L. cv. Victory) coleoptiles is closely associated with IAA-induced growth. It was attempted to separate these two processes by using cycloheximide to inhibit them differentially. Growth of abraded coleoptile segments was measured by a shadow graphic method, and their IAA-induced acidification of the external solution was monitored with a pH meter. IAA stimulated proton excretion in abraded Avena coleoptile segments after a 13 min lag. IAA-induced proton excretion was inhibited within 5 min by cycloheximide at concentrations of 1.8 × 10−6, 3.6 × 10 or 3.6 × 10−5 M. Cycloheximide at these concentrations, added within 4 min of IAA, prevented IAA-induced acidification of the medium for at least 60 min. However, it did not prevent IAA-induced growth during this time. It is concluded that some of the initial IAA-induced growth seen in Avena coleoptiles is independent of detectable IAA-induced proton excretion.  相似文献   

17.
Cleland RE 《Plant physiology》1992,99(4):1556-1561
Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.  相似文献   

18.
Polyclonal antibodies were raised in rabbits against isoprimeverose (Xyl1Glc1), xyloglucan heptasaccharides (Xyl3Glc4), and octasaccharides (Gal1Xyl3Glc4). Antibodies specific for hepta- and octasaccharides suppressed auxin-induced elongation of epicotyl segments of azuki bean (Vigna angularis Ohwi and Ohashi cv Takara). These antibodies also inhibited auxin-induced cell wall loosening (decrease in the minimum stress-relaxation time and the relaxation rate of the cell walls) of azuki segments. However, none of the antibodies influenced auxin-induced elongation or cell wall loosening of coleoptile segments of oat (Avena sativa L. cv Victory). Auxin caused a decrease in molecular mass of xyloglucans in the cell walls of azuki epicotyls and oat coleoptiles. The antibodies inhibited such a change in molecular mass of xyloglucans in both species. Preimmune serum exhibited little or no inhibitory effect on auxin-induced elongation, cell wall loosening, or breakdown of xyloglucans. The results support the view that the breakdown of xyloglucans is associated with the cell wall loosening responsible for auxin-induced elongation in dicotyledons. The view does not appear to be applicable to poaceae, because the inhibition of xyloglucan breakdown by the antibodies did not influence auxin-induced elongation or cell wall loosening of oat coleoptiles.  相似文献   

19.
Robert E. Cleland 《Planta》1976,128(3):201-206
Summary The fungal toxin fusicoccin (FC) induces both rapid cell elongation and H+-excretion in Avena coleoptiles. The rates for both responses are greater with FC than with optimal auxin, and in both cases the lag after addition of the hormone is less with FC. This provides additional support for the acid-growth theory. The FC responses resemble the auxin responses in that they are inhibited by a range of metabolic inhibitors, but the responses differ in three ways. First auxin, but not FC, requires continual protein synthesis for its action. The auxin-induced H+-excretion is inhibited by water stress or by low external pH, while the FC-induced H+-excretion is much less sensitive to either. It is concluded that auxin-induced and FC-induced H+-excretion may occur via different mechanisms.Abbreviations FC fusicoccin - DNP dinitrophenol - CCCP carbonylcyanide m-chlorophenylhydrazone - CHl cycloheximide - IAA indoleacetic acid  相似文献   

20.
The effects of continuous red and far-red light and of brief light pulses on the growth kinetics of the mesocotyl, coleoptile, and primary leaf of intact oat (Avena sativa L.) seedlings were investigated. Mesocotyl lengthening is strongly inhibited, even by very small amounts of Pfr, the far-red light absorbing form of phytochrome (e.g., by [Pfr]0.1% of total phytochrome, established by a 756-nm light pulse). Coleoptile growth is at first promoted by Pfr, but apparently inhibited later. This inhibition is correlated in time with the rupturing of the coleoptile tip by the primary leaf, the growth of which is also promoted by phytochrome. The growth responses of all three seedling organs are fully reversible by far-red light. The apparent lack of photoreversibility observed by some previous investigators of the mesocotyl inhibition can be explained by an extremely high sensitivity to Pfr. Experiments with different seedling parts failed to demonstrate any further obvious interorgan relationship in the light-mediated growth responses of the mesocotyl and coleoptile. The organspecific growth kinetics, don't appear to be influenced by Pfr destruction. Following an irradiation, the growth responses are quantitatively determined by the level of Pfr established at the onset of darkness rather than by the actual Pfr level present during the growth period.Abbreviation Pfr far-red light absorbing form of phytochrome  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号