首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zippora Gromet-Elhanan 《BBA》1967,131(3):526-537
Optimal cyclic photophosphorylation with reduced indophenols under anaerobic conditions was shown to require a critical redox balance. Over-reduction inhibited this phosphorylation; addition of oxidizing agents like ferricyanide, air, ferredoxin or ferredoxin plus triphosphopyridine nucleotide relieved the inhibition.

When ascorbate and indophenol served as the electron donor couple for TPN+ reduction, only the amount of TPNH formed was dependent on the concentration of TPN+. The phosphorylation observed in this system was dependent only on the concentration of indophenol, and on the ability of reduced indophenol to mediate cyclic photophosphorylation. The cyclic electron flow with reduced indophenol was shown to operate simultaneously with the non-cyclic electron flow to TPN+. It was concluded that there was no phosphorylation site in the non-cyclic electron flow between ascorbate-indophenol and TPN+ and that the phosphorylation observed in this case was due only to cyclic photophosphorylation with the reduced indophenols.

In the light of these results, a working hypothesis with two different sites for cyclic and non-cyclic photophosphorylation is suggested.  相似文献   


2.
Thylakoid membranes were prepared from the blue-green alga, Anacystis nidulans with lysozyme treatment and a short period of sonic oscillation. The thylakoid membrane preparation was highly active in the electron transport reactions such as the Hill reactions with ferricyanide and with 2,6-dichlorophenolindophenol, the Mehler reaction mediated by methyl viologen and the system 1 reaction with methyl viologen as an electron acceptor and 2,6-dichlorophenolindophenol and ascorbate as an electron donor system. The Hill reaction with ferricyanide and the system 1 reaction was stimulated by the phosphorylating conditions. The cyclic and non-cyclic phosphorylation was also active. These findings suggest that the preparation of thylakoid membranes retained the electron transport system from H2O to reaction center 1, and that the phosphorylation reaction was coupled to the Hill reaction and the system 1 reaction.  相似文献   

3.
Dibromo- and diiodo-naphthoquinones are shown to be inhibitors of the cytochrome b6/f complex in isolated thylakoid membranes from spinach chloroplasts. Dibromo-naphthoquinone inhibits ferredoxin catalyzed cyclic photophosphorylation at 0.1 μM concentrations, but non cyclic e-flow only at 10 μM. It does not inhibit cyclic systems with artifical cofactors, nor non-cyclic electron flow from duroquinol through photosystem I via the cytochrome b6/f complex. Dibromo-naphthoquinone does however, lower the stoichiometry for ATP formation in the duroquinol donor system. This inhibitory pattern is quite different from that of DBMIB, but very similar to that of antimycin. This antimycin-like behaviour of these inhibitors is interpreted to indicate a) the existence of a Qc site in the cytochrome b6/f complex and its obligate function in ferredoxin catalyzed cyclic electron flow and b) a non-essential role of the Qc site in non-cyclic electron flow, but which — when operative — pumps an extra proton across the thylakoid membrane increasing the ATP yield.  相似文献   

4.
Taka-Aki Ono  Norio Murata 《BBA》1978,502(3):477-485
Thylakoid membranes were prepared from the blue-green alga, Anacystis nidulans with lysozyme treatment and a short period of sonic oscillation. The thylakoid membrane preparation was highly active in the electron transport reactions such as the Hill reactions with ferricyanide and with 2,6-dichlorophenolindophenol, the Mehler reaction mediated by methyl viologen and the system 1 reaction with methyl viologen as an electron acceptor and 2,6-dichlorophenolindophenol and ascorbate as an electron donor system. The Hill reaction with ferricyanide and the system 1 reaction was stimulated by the phosphorylating conditions. The cyclic and non-cyclic phosphorylation was also active.These findings suggest that the preparation of thylakoid membranes retained the electron transport system from H2O to reaction center 1, and that the phosphorylation reaction was coupled to the Hill reaction and the system 1 reaction.  相似文献   

5.

1. 1. Small particles prepared from spinach chloroplasts after treatment with digitonin, exhibited Photosystem I reactions, including phosphorylation, at rates as high as those in chloroplasts, whereas electron flow from water to NADP+ or ferricyanide through Photosystem II was completely lost. Mediators of cyclic electron flow, such as pyocyanine, or N-methylphenazonium methosulfate in red light, had to be reduced to support photophosphorylation.Diaminodurene at high concentrations catalyzed cyclic phosphorylation under anaerobic conditions without addition of a reductant. In fact, addition of ascorbate gave rise to a marked inhibition which was released by addition of a suitable electron acceptor such as methylviologen.

2. 2. Under aerobic conditions a low O2 uptake, observed in the presence of diaminodurene, was stimulated several-fold upon addition of methylviologen and was stimulated again several-fold on further addition of ascorbate. The rate of phosphorylation, however, remained the same. The low P/2e ratio obtained under these conditions was not decreased at lower light intensities.

3. 3. These findings suggest a phosphorylation site associated with cyclic electron flow through Photosystem I without participation of the electron carriers of Photosystem II. A non-cyclic electron flow to O2 can be induced in this system by addition of methylviologen which effectively competes with the electron acceptors of cyclic flow. This non-cyclic electron flow still involves the same phosphorylation site. A scheme for electron transport and for the location of phosphorylation sites in chloroplasts is proposed.

Abbreviations: PMS, N-methylphenazonium methosulfate; DCIP, dichlorophenolindophenol; DCMU, dichlorophenyl-1,1-dimethylurea; Tricine, tris(hydroxymethyl)methylglycine  相似文献   


6.
S.G. Reeves  D.O. Hall 《BBA》1973,314(1):66-78
1. The stoichiometry of non-cyclic photophosphorylation and electron transport in isolated chloroplasts has been re-investigated. Variations in the isolation and assay techniques were studied in detail in order to obtain optimum conditions necessary for reproducibly higher ADP/O (equivalent to ATP/2e?) and photosynthetic control ratios.2. Studies which we carried out on the possible contribution of cyclic phosphorylation to non-cyclic phosphorylation suggested that not more than 10% of the total phosphorylation found could be due to cyclic phosphorylation.3. Photosynthetic control, and the uncoupling of electron transport in the presence of NH4Cl, were demonstrated using oxidised diaminodurene as the electron acceptor. A halving of the ADP/O ratio was found, suggesting that electrons were being accepted between two sites of energy conservation, one of which is associated with Photosystem I and the other associated with Photosystem II.4. ATP was shown to inhibit State 2 and State 3 of electron transport, but not State 4 electron transport or the overall ADP/O ratio, thus confirming its activity as an energy transfer inhibitor. It is suggested that part of the non-phosphorylating electron transport rate (State 2) which is not inhibited by ATP is incapable of being coupled to subsequent phosphorylation triggered by the addition of ADP (State 3). If the ATP-insensitive State 2 electron transport is deducted from the State 3 electron transport when calculating the ADP/O ratio, a value of 2.0 is obtained.5. The experiments reported demonstrate that there are two sites of energy conservation in the non-cyclic electron transfer pathway: one associated with Photosystem II and the other with Photosystem I. Thus, non-cyclic photophosphorylation can probably produce sufficient ATP and NADPH “in vivo” to allow CO2 fixation to proceed.  相似文献   

7.
Addition of NADPH to osmotically lysed spinach chloroplasts results in a reduction of the primary acceptor (Q) of photosystem II. This reduction of Q reaches a maximum of 50% in chloroplasts maintained under weak illumination and requires added ferredoxin and Mg2+. The reaction is inhibited by (I) an antibody to ferredoxin-NADP+ reductases (EC 1.6.7.1), (ii) treatment of chloroplasts with N-ethylmaleimide in the presence of NADPH, (iii) disulfodisalicylidenepropanediamine, (iv) antimycin, and (v) acceptors of non-cyclic electron transport. Uncouplers of phosphorylation do not affect NADPH-driven reduction of Q. It is proposed that electron flow from NADPH to Q may occur in the dark by a pathway utilising portions of the normal cyclic and non-cyclic electron carrier sequences. The possible in vivo role for such a pathway in redox poising of cyclic electron transport and hence in controlling the ATP/NADPH supply ratio is discussed.  相似文献   

8.
Addition of NADPH to osmotically lysed spinach chloroplasts results in a reduction of the primary acceptor (Q) of Photosystem II. This reduction of Q reaches a maximum of 50% in chloroplasts maintained under weak illumination and requires added ferredoxin and Mg2+. The reaction is inhibited by (i) an antibody to ferredoxin-NADP+ reductase (EC 1.6.7.1), (ii) treatment of chloroplasts with N-ethylmaleimide in the presence of NADPH, (iii) disulfodisalicylidenepropanediamine, (iv) antimycin, and (v) acceptors of non-cyclic electron transport. Uncouplers of phosphorylation do not affect NADPH-driven reduction of Q.It is proposed that electron flow from NADPH to Q may occur in the dark by a pathway utilising portions of the normal cyclic and non-cyclic electron carrier sequences. The possible in vivo role for such a pathway in redox poising of cyclic electron transport and hence in controlling the ATP/NADPH supply ratio is discussed.  相似文献   

9.
Historically, two main concepts guided research into possible mechanisms of light-induced atomic rearrangements in oxygenic photosynthesis: Photodecomposition of CO2 and photodecomposition of water. Both concepts envisioned photoinduced transfers of cumbersome whole atoms and not, as is currently held, photoinduced electron transfers. Early proposals for light-induced electron transfers were relegated to obscurity because they were speculative ideas, not supported by meaningful experimental findings and tied to hypothetical and ephemeral schemes. The concept of photoinduced rearrangements of whole atoms rather than electrons was so well entrenched that it was even invoked to explain their findings by the discoverers of the Hill reaction and cyclic photophosphorylation. The light-induced electron flow concept gained acceptance in photosynthesis research only with the discovery of non-cyclic photophosphorylation in which ATP formation is coupled with electron transport to ferredoxin/NADP+ or to artificial substitutes like ferricyanide.  相似文献   

10.
Redox conversions of cytochrome f were studied in intact pea leaves by double wavelength difference spectrophotometry. Using the inhibition of the photosystem II activity by far red light (719 nm) or diurone, it was found that cytochrome f is located between two photosystems on the oxidative side of photosystem I. The inhibitors of phosphorylation, , e.g. antimycin A and phloridzine, as well as the uncoupler, methylamine, strongly decreased electron transport through the carrier. It is concluded that cytochrome f is functioning in the non-cyclic phosphorylation. It is suggested that in vivo cytochrome f is not coupled with cyclic electron transfer.  相似文献   

11.
The ATP levels in photophosphorylation, glycolysis and oxidative phosphorylation, in the unicellular green alga Scenedesmus obtusiusculus, were titrated with narrow concentration intervals of desaspidin in the presence of different concentrations of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), which allows the differentiation between non-cyclic, pseudocyclic and true cyclic photophosphorylation. The data on photophosphorylative ATP levels were compared with earlier data on total binding of phosphate. In the true cyclic process, both parameters are equally sensitive towards desaspidin. Under pseudocyclic conditions and in non-cyclic photophosphorylation, the level of ATP is more sensitive towards desaspidin than is total binding of phosphate. This suggests a structural difference between the cyclic and the two non-cyclic (one of which is also pseudocyclic) sites. The non-cyclic ATP level is more sensitive towards desaspidin than is pseudocyclic. This may be connected with the higher ATP level under pseudocyclic as compared to non-cyclic conditions.  相似文献   

12.
The effects of DBMIB on photophosphorylation and glycolysis in Scenedesmus obtusiusculus Chod. were investigated by measuring the uptake of inorganic phosphate. To analyze the effects of DBMIB on the different energy coupling possibilities in open chain and cyclic photophosphorylation, DBMIB was given to the algae in narrow concentration intervals between 10?6M to 10?4M, either alone, or in combination with DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) or desaspidin. DBMIB inhibits non-cyclic as well as cyclic photophosphorylation in Scenedesmus. However, the DCMU resistant photophosphorylation reactions are less sensitive to DBMIB than the open chain photophosphorylating system in non-DCMU treated cells. Low concentrations of DBMIB even released a part of the DCMU inhibition. Experiments with combinations of DBMIB and desaspidin also indicated that cyclic photophosphorylation is less sensitive to DBMIB than non-cyclic. The inhibition of DCMU resistant cyclic phosphorylation by DBMIB, which is a competitive inhibitor of quinones, indicated a participation of plastoquinones in this type of energy coupling as well as in the non-cyclic and DCMU-sensitive processes. The cyclic and the non-cyclic photophosphorylation pathways probably use different parts of the plastoquinone pool. For the purpose of the experiments, it was necessary to produce data for the effect of DBMIB (10?6–10?4M) on glycolysis. The highest concentration gave 50% inhibition.  相似文献   

13.
Ruben H. Vallejos 《BBA》1973,292(1):193-196
Sanguinarine, chelerythrine and chelidonine, benzophenanthridine alkaloids, inhibited both photosynthetic phosphorylation associated with ferricyanide reduction and cyclic photophosphorylation catalyzed by phenazine methosulphate. They did not affect electron transport in the presence of ADP and Pi and stimulated it in their absence. The inhibition of O2 evolution by energy transfer inhibitors was reversed by the alkaloids. It is concluded that these alkaloids are uncouplers with the same efficiency in cyclic and non-cyclic photophosphorylation. This property might have some bearing in the physiological role of the alkaloids.  相似文献   

14.
Photosynthetic control by isolated pea chloroplasts   总被引:6,自引:3,他引:3       下载免费PDF全文
Isolated pea chloroplasts undergo both cyclic and non-cyclic electron flow. Both processes are coupled to photophosphorylation. During non-cyclic flow the rate of oxygen production showed ADP-governed ;photosynthetic control' analogous to respiratory control of isolated mitochondria. Measurements of ADP/O and photosynthetic control ratios yielded values of 1-1.3 and 2-5.7 respectively. ;Photosynthetic control' was shown to be dependent on the intactness of the chloroplasts.  相似文献   

15.
John Biggins 《BBA》1978,504(2):288-297
The photoinduced turnover of P-700 (the reaction center chlorophyll a of photosystem I) in higher plant thylakoids was examined at room temperature by observation of the kinetics and amplitude of the transmission signal at 700 nm. The concentration of P-700 functional in cyclic and non-cyclic electron transfer reactions was compared. For the cyclic reactions mediated by N-methylphenazonium-p-methosulfate, 2,3,5,6-tetramethylphenylenediamine, 2,6-dichlorophenolindophenol and N,N,N′,N′-tetramethylphenylenediamine and non-cyclic reactions utilizing either methylviologen or NADP+ as acceptor, the illuminated steady-state concentration of P-700+ was shown to be similar. The data support the concept of a homogeneous pool of P-700 that is capable of interaction in both cyclic and non-cyclic electron transfer reactions and are consistent with previous data obtained in vivo.The amplitude and kinetics of the P-700 signal were found to be very dependent upon the composition of the reaction medium and differences were noted for turnover in the cyclic and non-cyclic reactions. Specifically, at white light saturation, the addition of low concentrations of divalent cations, such as Mg2+ or Ca2+, had no effect on the signal amplitude during the cyclic reactions, but, in confirmation of previous work, caused an attenuation of the signal amplitude during non-cyclic flow. At low light intensities, the divalent cations caused a similar reduction in redox level of P-700 in the steady-state during non-cyclic flow and also reduced the rate of P-700 photooxidation in the cyclic reactions. The concentration of divalent cation that reduced the signal amplitude of P-700+ during non-cyclic flow was compared with that required for the stimulation of the variable component of fluorescence, and it was shown to be similar with half maximal effects at 1 mM Mg2+. The observations confirm that divalent cations control non-cyclic electron transport by an activation of Photosystem II in addition to regulating the distribution of excitation energy between the two photosystems.  相似文献   

16.
N ,N' -Dicyclohexylcarbodiimide (DCCD) at concentrations above 0.1 mM inhibits light-induced generation of a membrane potential in the course of cyclic and non-cyclic electron transfer, as well as light-induced oxygen uptake due to interaction of photoreduced secondary (loosely bound) ubiquinone with O2 in Rhodospirillum rubrum chromatophores. Similarly to o-phenanthroline, DCCD blocks the electron transfer in the chromatophores between the primary (tightly bound) and secondary ubiquinones.  相似文献   

17.
Proton uptake as well as coupled electron flow of chloroplasts swollen in dilute impermeable buffers became dependent upon the addition of exogenous permeable anions. This dependence was observed with both cyclic and non-cyclic electron acceptors, suggesting that this anion requirement is associated with the electrogenic proton uptake step rather than with the oxygen-evolving reactions of photosystem II.  相似文献   

18.
An investigation of the action of phenylmereuric acetate (PMA) and phosphate on light-induced shrinkage (measured by light scattering and Coulter Counter techniques) and on photosynthetic reactions in spinach chloroplasts led to the following conclusions:
  • 1) PMA stimulated light-induced shrinkage (under conditions of cyclic and non-cyclic electron flow) at concentrations which completely inhibited cyclic and non-cyclic photophosphorylation and nicotinamide adenine dinucleotide phosphate (NADP) reduction, though ferricyanide reduction was activated. Although PMA inhibited NADP reduction (probably because this sulfhydryl reagent interfered with the ferredoxin-NADP rednetase) it ean also be considered an uncoiipler (when ferricyanide is the electron acceptor).
  • 2) Phosphate maximized light-induced shrinkage (under conditions of cyclic and non cyclic electron flow) at concentrations which did not affect ferricyanide reduction but caused a 40 to 50 per cent inhibition of NADP reduction.
  • 3) The pattern of the light scattering response to these two compounds was quite different. In the presence of PMA, the forward (light on) and hack (light off) reactions went to completion rapidly. In the presence of phosphate, the back reaction was rapid but, in the light-induced reaction, three phases were discernible.
  • 4) Compared with uncouplers such as NH4Cl, carbonyl cyanide m-chlorophenyl-hydrazone, pentachlorophenol, and dicoumarol, all of which inhibited both photophosphorylation and conformational changes in chloroplasts, PMA (like quinacrine) had a specific action since it inhibited photophosphorylation while shrinkage was stimulated.
  • 5) It appeared that PMA acted at a site beyond the formation of high energy inter-mediates and that, in the absence of photophosphorylation, more energy was diverted to mechanical work (shrinkage). It would seem that, in a cyclic electron flow system, in which ATP synthesis is blocked at a late step (e.g. by PMA), shrinkage may be an indirect method for measuring electron flow.
  相似文献   

19.
A new inhibitor of photoreactions in chloroplasts, 2,3-dimethyl 5-dybroxy 6-phytol benzoquinone is shown to be an electron transfer inhibitor which blocks both cyclic and non-cyclic electron flow. Basal levels of electron transport from reduced dichlorophenol-indophenol to methyl viologen are not affected by the inhibitor, but uncoupler stimulated electron transport in the same system is inhibited. It is concluded that reduced dichlorophenol-indophenol can be oxidized by the photosynthetic electron transport chain in isolated chloroplasts at two sites: site I proximal to P700 and site II distal to P700. Site I has a low affinity for the electron donor. Electron flow from this site to methyl viologen does not suppert ATP formation and it is resistant to inhibition by the quinone analogue. Electron donation at site II, located on the linear portion of the electron transport chain between the two photosystems, has a higher affinity for reduced dichlorophenol-indophenol and precedes a phosphorylation site. The electron flow from this site is stimulated by uncouplers and inhibited by the quinone analogue.Abbreviations DPIP 2,6-dichlorophenol indophenol - MeV methyl viologen - DCMU s-(s, t-dichlocophenyl-1,1-dimethylurca - CCP m-chlorocyanocarbonyl phenylthydrazone - DTE dithioerythritol - PMS phenaxine methosulfate - DMHPB 2,3-dimethyl 5-hydroxy 6-phytol benzoquinone Contribution No. 422 from the Charles F. Kettering Research Laboratory. This research supported in part by the National Science Foundation Grant No. G88432.Supported by an NSF Post-doctoral Fellowship No. 49032.  相似文献   

20.
Stimulation of Photoreactions of Isolated Chloroplasts by Serum Albumin   总被引:6,自引:4,他引:2  
Serum albumin was shown to stimulate markedly various photoreactions in isolated bean and lettuce chloroplasts. The maximal effect was obtained when this compound was present during the homogenization step and continuously in the chloroplast preparation. The "basal" electron transport was enhanced using various acceptors and stimulation was obtained also in the presence of uncouplers. The quantum requirement for ferricyanide reduction was appreciably reduced. Serum albumin increased the rate of cyclic phosphorylation and the ratio of P/e(2) in non-cyclic phosphorylation. The increase in phosphorylation is supposedly due to inhibition of the rate of decay of the high energy non-phosphorylated intermediate, X(E).It is postulated that serum albumin affects chloroplast photoreactions by binding endogenously released unsaturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号