首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Mechanism of Iron (III) Stimulation of Lipid Peroxidation   总被引:1,自引:0,他引:1  
A study conducted on Fe2+ autoxidation showed that its rate was extremely slow at acidic pH values and increased by increasing the pH; it was stimulated by Fe3+ addition but the stimulation did not present a maximum at a Fe2+/Fe3+ ratio approaching 1:1. The species generated during Fe3+-catalyzed Fe2+ autoxidation was able to oxidize deoxyribose; the increased Fe2+ oxidation observed at higher pHs was paralleled by increased deoxyribose degradation. The species generated during Fe3+-catalyzed Fe2+ autoxidation could not initiate lipid peroxidation in phosphatidylcholine liposomes from which lipid hydroperoxides (LOOH) had been removed by treatment with triph-enylphosphine. Neither Fe2+ oxidation nor changes in the oxidation index of the liposomes due to lipid peroxidation were observed at pHs where the Fe3+ effect on Fe2+ autoxidation and on deoxyribose degradation was evident. In our experimental system, a Fe2+/Fe3+ ratio ranging from 1:3 to 2:1 was unable to initiate lipid peroxidation in LOOH-free phosphatidylcholine liposomes. By contrast Fe3+ stimulated the peroxidation of liposomes where increasing amounts of cumene hydroperoxide were incorporated. These results argue against the participation of Fe3+ in the initiation of LOOH-independent lipid peroxidation and suggest its possible involvement in LOOH-dependent lipid peroxidation.  相似文献   

2.
P. Joliot  A. Joliot 《BBA》1977,462(3):559-574
1. The amplitudes of the fast (0–20 μs) and slow (20 μs–2 ms) fluorescence rise induced by a 2 μs flash have been measured as a function of the energy of the flash in chloroplasts inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea. The saturation curve for the slow rise shows a characteristic lag which is not observed for the fast fluorescence rise. This lag indicates that Photosystem II centers undergo a double hit process which implies that (a), each photocenter includes two acceptors Q1 and Q2; (b), after the first hit, oxidized chlorophyll Chl+ is reduced by a secondary acceptor Y in a time short compared to the duration of the flash; (c), after the second hit, Chl+ is reduced by another secondary donor, D.

2. According to Den Haan et al. ((1974) Biochim. Biophys. Acta 368, 409–421), hydroxylamine destroys the secondary donor responsible for the fast reduction of Chl+. In the presence of 3 mM hydroxylamine, only the secondary donor D is functional and a flash induces mainly a single hit process.

3. The saturation curves for the fast and the slow rises have been studied in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea for a second actinic flash given 2.5 s after a first saturating one. The large decrease in the half-saturating energy indicates the existence of efficient energy transfer occuring between photosynthetic units.

4. Two alternate hypotheses are discussed (a) in which D is an auxiliary donor and (b) in which D is included in the main electron transfer chain.  相似文献   


3.
Objective: Al3+ stimulates Fe2+ induced lipid oxidation in liposomal and cellular systems. Low-density lipoprotein (LDL) oxidation may render the particle atherogenic. As elevated levels of Al3+ and increased lipid oxidation of LDL are found in sera of hemodialysis patients, we investigated the influence of Al3+ on LDL oxidation.

Materials and methods: Using different LDL modifying systems (Fe2+, Cu2+, free radical generating compounds, human endothelial cells, hemin/H2O2 and HOCl), the influence of Al3+ on LDL lipid and apoprotein alteration was investigated by altered electrophoretic mobility, lipid hydroperoxide-, conjugated diene- and TBARS formation.

Results: Al3+ could stimulate the oxidizability of LDL by Fe2+, but not in the other systems tested. Al3+ and Fe2+ were found to bind to LDL and Al3+could compete with Fe2+ binding to the lipoprotein. Fluorescence polarization data indicated that Al3+ does not affect the phospholipid compartment of LDL.

Conclusions:The results indicate that increased LDL oxidation by Fe2+ in presence of Al3+ might be due to blockage of Fe2+ binding sites on LDL making more free Fe2+ available for lipid oxidation.  相似文献   

4.
Chelation by citrate was found to promote the autoxidation of Fe2+, measured as the disapperance of 1,10-phenanthroline-chelatable Fe2+. The autoxidation of citrate---2+ could in turn promote the peroxidation of microsomal phospholipid liposomes, as judged by malondialdehyde formation. At low citrate---Fe2+ ratios the autoxidation of Fe2+ was slow and the formation of malondialdehyde was preceded by a lag phase. The lag phase evidence of this, linear initial rates of lipid peroxidation were obtained via the combination of citrate---Fe2+ and citrate---Fe3+, optimum activity occurring at a Fe3+---Fe2+ ratio of 1:1. Evidence is also presented to suggest that the superoxide and the hydrogen peroxide that are formed during the autoxidation of citrate---Fe2+ can either stimulate or inhibit lipid peroxidation by affecting the yield of citrate---Fe3+ from citrate---Fe2+. No evidence was obtained for the participation of the hydroxyl radical in the initiation of lipid peroxidation by citrate---Fe2+.  相似文献   

5.
In an experimental system where both Fe2+ autoxidation and generation of reactive oxygen species is negligible, the effect of FeCl2 and FeCl3 on the peroxidation of phosphatidylcholine (PC) liposomes containing different amounts of lipid hydroperoxides (LOOH) was studied; Fe2+ oxidation, oxygen consumption and oxidation index of the liposomes were measured. No peroxidation was observed at variable FeCl2/FeCl3 ratio when PC liposomes deprived of LOOH by triphenyl-phosphine treatment were utilized. By contrast, LOOH containing liposomes were peroxidized by FeCl2. The FeCl2 concentration at which Fe2+ oxidation was maximal, defined as critical Fe2+ concentration [Fe2+]*, depended on the LOOH concentration and not on the amount of PC liposomes in the assay. The LOOH-dependent lipid peroxidation was stimulated by FeCl3, addition; the oxidized form of the metal increased the average length of radical chains, shifted to higher values the [Fe2+]* and shortened the latent period. The iron chelator KSCN exerted effects opposite to those exerted by FeCl3 addition. The experimental data obtained indicate that the kinetics of LOOH-dependent lipid peroxidation depends on the Fe2+/Fe3+ ratio at each moment during the time course of lipid peroxidation. The results confirm that exogenously added FeCl3 does not affect the LOOH-independent but the LOOH-deendent lipid peroxidation; and suggest that the Feg, endogenously generated exerts a major role in the control of the LOOH-dependent lipid peroxidation.  相似文献   

6.
Although considerably more oxidation-resistant than other P-type ATPases, the yeast PMA1 H+-ATPase of Saccharomyces cerevisiae SY4 secretory vesicles was inactivated by H2O2, Fe2+, Fe- and Cu-Fenton reagents. Inactivation by Fe2+ required the presence of oxygen and hence involved auto-oxidation of Fe2+ to Fe3+. The highest Fe2- (100 μM) and H2O2 (100 mM) concentrations used produced about the same effect. Inactivation by the Fenton reagent depended more on Fe2+ content than on H2O2 concentration, occurred only when Fe2+ was added to the vesicles first and was only slightly reduced by scavengers (mannitol, Tris, NaN3, DMSO) and by chelators (EDTA, EGTA, DTPA, BPDs, bipyridine, 1, 10-phenanthroline). Inactivation by Fe- and Cu- Fenton reagent was the same; the identical inactivation pattern found for both reagents under anaerobic conditions showed that both reagents act via OH·. The lipid peroxidation blocker BHT prevented Fenton-induced rise in lipid peroxidation in both whole cells and in isolated membrane lipids but did not protect the H+-ATPase in secretory vesicles against inactivation. ATP partially protected the enzyme against peroxide and the Fenton reagent in a way resembling the protection it afforded against SH-specific agents. The results indicate that Fe2+ and the Fenton reagent act via metal-catalyzed oxidation at specific metal-binding sites, very probably SH-containing amino acid residues. Deferrioxamine, which prevents the redox cycling of Fe2+, blocked H+-ATPase inactivation by Fe2+ and the Fenton reagent but not that caused by H2O2, which therefore seems to involve a direct non-radical attack. Fe-Fenton reagent caused fragmentation of the H+-ATPase molecule, which, in Western blots, did not give rise to defined fragments bands but merely to smears.  相似文献   

7.
The Fe3+-doxorubicin complex undergoes reactions that suggest that the complex self-reduces to a ferrous oxidized-doxorubicin free radical species. The Fe3+-doxorubicin system is observed to reduce ferricytochrome c, consume O2 and react with 2,2′-bipyridine. Bipyridine acts as a “ferrous ion scavenger” as it reacts with the ferrous ion produced by Fe3+-doxorubicin self-reduction. In the absence of O2, a ferrous doxorubicin complex accumulates. In the presence of oxygen, Fe2+ recycles back to Fe3+. The rates of these reactions were measured and the Fe3+-doxorubicin self-reduction was determined to be the rate-determining step. The Fe3+-doxorubicin induced inactivation of cytochrome c oxidase and NADH cytochrome c reductase on beef heart submitochondrial particles occurs at a rate similar to Fe3+-doxorubicin self-reduction. Thus the rate at which damage to these mitochondrial enzymes occurs may be controlled by a nonezymatic Fe3+-doxorubicin self-reduction.  相似文献   

8.
To define the molecular mechanism(s) of carvedilol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process.

Carvedilol inhibits the peroxidation of sonicated phosphatidylcholine liposomes triggered by FeCl2 addition whereas atenolol, pindolol and labetalol are ineffective. The inhibition proved not to be ascribable (a) to an effect on Fe2+ autoxidation and thus on the generation of oxygen derived radical initiators; (b) to the scavenging of the inorganic initiators O·-2 and ·OH; (c) to an effect on the reductive cleavage of organic hydroperoxides by FeCl2; (d) to the scavenging of organic initiators. The observations that (a) carvedilol effectiveness is inversely proportional to the concentration of FeCl2 and lipid hydroperoxides in the assay; (b) the drug prevents the onset of lipid peroxidation stimulated by FeCl3 addition and; (c) it can form a complex with Fe3+, suggest a molecular mechanism for carvedilol action. It may inhibit lipid peroxidation by binding the Fe3+ generated during the oxidation of Fe2+ by lipid hydroperoxides in the substrate. The lag time that carvedilol introduces in the peroxidative process would correspond to the time taken for carvedilol to be titrated by Fe3+; when the drug is consumed the Fe3+ accumulates to reach the critical parameter that stimulates peroxidation. According to this molecular mechanism the antioxidant potency of carvedilol can be ascribed to its ability to bind a species, Fe3+, that is a catalyst of the process and to its lipophilic nature that concentrates it in the membranes where Fe3+ is generated by a site specific mechanism.  相似文献   

9.
综述了近年趋磁细菌纳米磁小体生物合成的分子机制及应用进展。磁小体的合成涉及磁小体膜的形成、铁的吸收和转运、磁小体晶体的矿化、成熟以及磁小体的链状排列等。其中Mam J和Mam K互作并丝状排列,固定磁小体使其链状排列及磁小体膜由细胞质膜内陷而形成是两个令人注目的成就。我们也提出了关于磁小体的生理意义及合成机制的假说:细胞在低氧浓度下由于氧胁迫大量吸收铁,Fe3+/Fe2+电子对可起到类似O2/H2O的作用,产生能量并作为电子受体;Fe3+得到电子还原成的Fe2+可引起Fenton反应,此反应产生的活性氧可影响到生物体的正常生理代谢,细胞为降低Fe2+浓度,将其与Fe3+一同转化为Fe3O4颗粒;磁小体的生理功能之一是降低胞内的活性氧。  相似文献   

10.
Based on electron acceptor abundance, Fe3+ and SO42- reduction by bacteria may play a dominant role in intrinsic bioremediation of some organic contaminants in the subsurface. Both Fe3+ and SO42- reduction processes involve mineral phases and may not be properly understood by evaluating only groundwater concentrations. Fe and S mineral analyses should be incorporated in natural attenuation studies; however, inherent problems with sample collection and analysis have discouraged such efforts. Methods are presented here for (1) sediment collection and anoxic preservation, (2) evaluation of biologically available Fe3+ and biogenically produced Fe2+ minerals, and (3) a simplified extended mineral sulfide analysis for ∼FeS and S°+FeS2. These techniques are demonstrated to evaluate Fe3+ and SO42- reduction at three sites where the soil or aquifer matrix had been contaminated with gasoline fuel, methane gas, or landfill leachate. It is expected that these techniques will permit Fe and S mineral analyses to become a routine part of natural attenuation assessments.  相似文献   

11.
The effect of lactic acid (lactate) on Fenton based hydroxyl radical (·OH) production was studied by spin trapping, ESR, and fluorescence methods using DMPO and coumarin-3-carboxylic acid (3-CCA) as the ·OH traps respectively. The ·OH adduct formation was inhibited by lactate up to 0.4mM (lactate/iron stoichiometry = 2) in both experiments, but markedly enhanced with increasing concentrations of lactate above this critical concentration. When the H2O2 dependence was examined, the DMPO-OH signal was increased linearly with H2O2 concentration up to 1 mM and then saturated in the absence of lactate. In the presence of lactate, however, the DMPO-OH signal was increased further with higher H2O2 concentration than 1 mM, and the saturation level was also increased dependent on lactate concentration. Spectroscopic studies revealed that lactate forms a stable colored complex with Fe3+ at lactate/Fe3+ stoichiometry of 2, and the complex formation was strictly related to the DMPO-OH formation. The complex formation did not promote the H2O2 mediated Fe3+ reduction. When the Fe3+-lactate (1:2) complex was reacted with H2O2, the initial rate of hydroxylated 3-CCA formation was linearly increased with H2O2 concentrations. All the data obtained in the present experiments suggested that the Fe3+-lactate (1:2) complex formed in the Fenton reaction system reacts directly with H2O2 to produce additional ·OH in the Fenton reaction by other mechanisms than lactate or lactate/Fe3+ mediated promotion of Fe3+/Fe2+ redox cycling.  相似文献   

12.
The effect of different oxygen radical-generating systems on NAD(P)H was determined by incubating the reduced forms of the pyridine coenzymes with either Fe2+-H2O2 or Fe3+-ascorbate and by analyzing the reaction mixtures using a HPLC separation of adenine nucleotide derivatives. The effect of the azo-initiator 2,2'-azobis(2-methylpropionamidine)dihydrochloride was also tested. Results showed that, whilst all the three free radical-producing systems induced, with different extent, the oxidation of NAD(P)H to NAD(P)+, only Fe2+-H2O2 also caused the formation of equimolar amounts of ADP-ribose(P) and nicotinamide. Dose-dependent experiments, with increasing Fe2+ iron (concentration range 3-180 μM) or H2O2 (concentration range 50-1000 μM), were carried out at pH 6.5 in 50 mM ammonium acetate. NAD(P)+, ADP-ribose(P) and nicotinamide formation increased by increasing the amount of hydroxyl radicals produced in the medium. Under such incubation conditions NAD(P)+/ADP-ribose(P) ratio was about 4 at any Fe2+ or H2O2 concentration. By varying pH to 2.0, 3.0, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0 and 7.4, NAD(P)+/ADP-ribose(P) ratio changed to 5.5, 3.2, 1.8, 1.6, 2.0, 2.5, 3.0, 5.4 and 6.5, respectively. Kinetic experiments indicated that 90-95% of all compounds were generated within 5s from the beginning of the Fenton reaction. Inhibition of ADP-ribose(P), nicotinamide and NAD(P)+ production of Fe2+-H2O2-treated NAD(P)H samples, was achieved by adding mannitol (10-50 mM) to the reaction mixture. Differently, selective and total inhibition of ADP-ribose(P) and nicotinamide formation was obtained by performing the Fenton reaction in an almost completely anhydrous medium, i.e. in HPLC-grade methanol. Experiments carried out in isolated postischemic rat hearts perfused with 50 mM mannitol, showed that, with respect to values of control hearts, this hydroxyl radical scavenger prevented reperfusion-associated pyridine coenzyme depletion and ADP-ribose formation. On the basis of these results, a possible mechanism of action of ADP-ribose(P) and nicotinamide generation through the interaction between NAD(P)H and hydroxyl radical (which does not involve the C-center where “conventional” oxidation occurs) is presented. The implication of this phenomenon in the pyridine coenzyme depletion observed in postischemic tissues is also discussed.  相似文献   

13.
We sought to confirm a recent report that Fe+2 uptake into rat brush-border membrane vesicles is markedly increased by short-term consumption of iron-deficient diet, with no additional enhancement as the animal becomes functionally iron-deficient with continuing dietary Fe deprivation. In addition, we investigated whether previously observed in vivo absorption interactions of iron, zinc, and manganese occur in the brush border membrane vesicles uptake process, and whether short-term or long-term consumption of an iron-deficient diet affects the interaction at the uptake level. We did not observe any differences in Fe+2 uptake between normal and iron-deficient brush border membrane vesicles, even when the iron status contrast was intensified by feeding a high iron versus iron-deficient diet for 3 weeks. Equimolar Zn+2 and Mn+2 decreased Fe+2 uptake by 29 to 50% and 11 to 39%, respectively. Iron deficiency did not alter these effects. Equimolar Fe+2 decreased Zn+2 uptake by 13 to 22%. Calcium, included as a negative control, did not affect Fe+2 uptake. Thus, some competition between Fe+2 and similar divalent cations does occur at the level of the brush border membrane; the exact nature of this competition remains to be determined.  相似文献   

14.
The reaction of FeII oxalate with hydrogen peroxide and dioxygen was studed for oxalate concentrations up to 20 mM and pH 2-5, under which conditions mono- and bis-oxalate comlexes (FeII(ox) and FeII(ox)22-) and uncomplexed Fe2+ must be considered. The reaction of FeII oxalate with hydrogen peroxide (Fe2+ + H2O2 → Fe3+ + *OH + OH-) was monitored in continuous flow by ESR with t-butanol as a radical trap. The reaction is much faster than for uncomplexed Fe2+ and a rate constant, k = 1 × 104 M-1 s-1 is deduced for FeII(ox). The reaction of FeII oxalate with dioxygen is strongly pH dependent in a manner which indicates that the reactive species is FeII(ox)22-, for which an apparent second order rate constant, k = 3.6 M-1 s-1, is deduced. Taken together, these results provide a mechanism for hydroxyl radical production in aqueous systems containing FeII complexed by oxalate. Further ESR studies with DMPO as spin trap reveal that reaction of FeII oxalate with hydrogen peroxide can also lead to formation of the carboxylate radical anion (CO2*-), an assignment confirmed by photolysis of FeIII oxalate in the presence of DMPO.  相似文献   

15.
We are addressing the puzzling metal ion specificity of Fe- and Mn-containing superoxide dismutases (SODs) [see C.K.Vance, A.-F. Miller, J. Am. Chem. Soc. 120(3) (1998) 461–467]. Here, we test the significance to activity and active site integrity of the Gln side chain at the center of the active site hydrogen bond network. We have generated a mutant of MnSOD with the active site Gln in the location characteristic of Fe-specific SODs. The active site is similar to that of MnSOD when Mn2+, Fe3+ or Fe2+ are bound, based on EPR and NMR spectroscopy. However, the mutant’s Fe-supported activity is at least 7% that of FeSOD, in contrast to Fe(Mn)SOD, which has 0% of FeSOD’s activity. Thus, moving the active site Gln converts Mn-specific SOD into a cambialistic SOD and the Gln proves to be important but not the sole determinant of metal-ion specificity. Indeed, subtle differences in the spectra of Mn2+, Fe3+ and 1H in the presence of Fe2+ distinguish the G77Q, Q146A mut-(Mn)SOD from WT (Mn)SOD, and may prove to be correlated with metal ion activity. We have directly observed the side chain of the active site Gln in Fe2+SOD and Fe2+(Mn)SOD by 15N NMR. The very different chemical shifts indicate that the active site Gln interacts differently with Fe2+ in the two proteins. Since a shorter distance from Gln to Fe and stronger interaction with Fe correlate with a lower Em in Fe(Mn)SOD, Gln has the effect of destabilizing additional electron density on the metal ion. It may do this by stabilizing OH coordinated to the metal ion.  相似文献   

16.
Isolated plasma membranes of lactating mouse mammary gland were treated with different concentrations of ascorbate, sodium citrate, sodium bicarbonate, combinations of them (from 16 x 10−10 to 4 x 10−6 moles/L) and studied for the binding of 59Fe2+ and 59Fe3+ at pH 7.4. The results show that the Fe3+ form of iron is under a greater influence of anions used in these experiments. The Fe2+ form of iron is weakly bounded and affected. It is suggested that the form with a greater positive electric charge is more effectively bound to the receptors in plasma membranes.  相似文献   

17.
The role of histidine on DNA breakage induced by hydrogen peroxide (H2O2) and ferric ions or by H2O2 and cupric ions was studied on purified DNA. L-histidine slightly reduced DNA breakage by H2O2 and Fe3+ but greatly inhibited DNA breakage by H2O2 and Cu2+. However, only when histidine was present, the addition of EDTA to H2O2 and Fe3+ exhibited a bimodal dose response curve depending on the chelator metal ratio. The enhancing effect of histidine on the rate of DNA degradation by H2O2 was maximal at a chelator metal ratio between 0.2 and 0.5, and was specific for iron. When D-histidine replaced L-histidine, the same pattern of EDTA dose response curve was observed. Superoxide dismutase greatly inhibited the rate of DNA degradation induced by H2O2, Fe3+, EDTA and L-histidine involving the superoxide radical.

These studies suggest that the enhancing effect of histidine on the rate of DNA degradation by H2O2 and Fe3+ is mediated by an oxidant which could be a ferrous-dioxygen-ferric chelate complex or a chelate-ferryl ion.  相似文献   

18.
In 1999, we first reported that a white rot fungus, Ceriporiopsis subvermispora produced a series of novel alkylitaconic acids (ceriporic acids). In the present paper we synthesized the metabolite, 1-nonadecene-2,3-dicarboxylic acid (ceriporic acid B) by Grignard reaction to analyze chemical properties of the alkylitaconates. Mass spectrometer (MS) and nuclear magnetic resonance (NMR) spectra of the synthetic compound was identical to those of the fungal metabolite isolated. The dicarboxylic acid inhibited autoxidation of Fe2+ to Fe3+ as well as reduction of Fe3+ to Fe2+ by the strong natural reductants, cysteine, glutathione, and ascorbic acid. The formation of charge transfer complexes (CTCs) between 1-heptadecene-2,3-dicarboxylic acid and oxidized intermediates from phenolic substrates were also observed. Thus, we herein report that the new class of lipid-related metabolites produced by C. subvermispora are potential metabolites participating in the control of iron redox reactions and CTCs formation from oxidized lignin fragments.  相似文献   

19.
The authors previously reported that Fe2+ is capable of increasing the binding of dopamine and of serotonin to “serotonin binding proteins” which are present in soluble extracts from calf brain. In this study, it is shown that Mn2+ and Cu2+ are also capable of increasing the binding, but for dopamine only. As for Fe2+, Mn2+ and Cu2+ are likely to promote the binding by virtue of their ability to enhance the oxidation of dopamine into dopamine-O-quinone, a derivative which is known to undergo covalent association with sulfhydryl groups of proteins. Data such as the irreversible nature of the majority of the binding, the inhibitory action of reducing agents (sodium ascorbate) and of reagents which contain, or modify sulfhydryl groups (reduced glutathione) are compatible with such a mechanism. The three metal ions are also capable of inactivating part of the binding sites on SBP directly; this effect is more pronounced for Cu2+ than for Fe2+ and it is only weak for Mn2+. The Fe2+-mediated binding of dopamine is inhibited by the superoxide dismutase enzyme, and it was therefore suggested that Fe2+ enhances the oxidation of dopamine by virtue of its ability to produce superoxide radicals out of dissolved molecular oxygen. Such a mechanism does not appear to take place in the case of Mn2+ and Cu2+. Instead, it is likely that Cu2+ and dopamine form a complex which is highly susceptible towards oxidation by dissolved molecular oxygen. Mn2+, on the other hand, can easily be oxidized into Mn3+, which is capable to oxidize dopamine by itself. Chronic manganese intoxication (from exposure to manganese) and Wilson's disease (related to inadequate elimination of copper) go along with neurological symptoms which are very similar to those encountered in Parkinson's disease. Our data indicate that manganese and copper ions accelerate the oxidation of catecholamines to produce toxic quinones. These quinones could, at least in part, account for the degeneration of dopamininergic neurons in such pathologies.  相似文献   

20.
Detection of heavy metal toxicity using cardiac cell-based biosensor   总被引:2,自引:0,他引:2  
Liu Q  Cai H  Xu Y  Xiao L  Yang M  Wang P 《Biosensors & bioelectronics》2007,22(12):3224-3229
Biosensors incorporating mammalian cells have a distinct advantage of responding in a manner which offers insight into the physiological effect of an analyte. To investigate the potential applications of cell-based biosensors on heavy metal toxicity detection, a novel biosensor for monitoring electrophysiological activity was developed by light-addressable potentiometric sensor (LAPS). Extracellular field potentials of spontaneously beating cardiomyocytes could be recorded by LAPS in the range of 20 μV to nearly 40 μV with frequency of 0.5–3 Hz. After exposed to different heavy metal ions (Hg2+, Pb2+, Cd2+, Fe3+, Cu2+, Zn2+; in concentration of 10 μM), cardiomyocytes demonstrated characteristic changes in terms of beating frequency, amplitude and duration under the different toxic effects of ions in less than 15 min. This study suggests that, with the physiological monitoring, it is possible to use the cardiac cell-based biosensor to study acute and eventually chronic toxicities induced by heavy metal ions in a long-term and no-invasive way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号