首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
β-Cyanoalanine synthase, which catalyzes the reaction between cysteine and HCN to form β-cyanoalanine and H2S, was assayed in leaf tissues from cyanogenic (Sorghum bicolor × Sorghum sudanense [sorghum]) and noncyanogenic (Pisum sativum [pea], Zea mays [maize], and Allium porrum [leek]) plants. The activity in whole leaf extracts ranged from 33 nanomoles per gram fresh weight per minute in leeks, to 1940 nanomoles per gram fresh weight per minute in sorghum. The specific activities of β-cyanoalanine synthase in epidermal protoplasts from maize and sorghum and in epidermal tissues from peas were in each case greater than the corresponding values for mesophyll protoplasts or tissues, or for strands of bundle sheath cells.

The tissue distributions for this enzyme were determined for pea, leek, and sorghum: the mesophyll protoplasts and tissues in these three plants contained 65% to 78% of the enzyme, while epidermal protoplasts and tissues contained 10% to 35% of the total leaf activity. In sorghum, the bundle sheath strands contained 13% of the leaf activity. The presence of β-cyanoalanine synthase in all tissues and species studied suggests a fundamental role for this enzyme in plant metabolism.

  相似文献   

2.
Treatment of etiolated seedlings of barley (Hordeum vulgare) and soybean (Glycine max) with 1 millimolar 2,4-dichlorophenoxyacetic acid (2,4-D) resulted in a 14-fold and greater than 100-fold increase in ethylene production, respectively. Simultaneous monitoring of endogenous cyanide and β-cyanoalanine synthase (β-CAS) (EC 4.4. 1.9) activity was also performed. Endogenous levels of cyanide did not change in barley. In soybean, endogenous cyanide increased within 3 hours, increased again 6 hours after exposure to 2,4-D, and continued to increase throughout the experimental period. The activity of β-CAS increased in both barley and soybean 9 hours after herbicide treatment. The increase in cyanide preceded the increase in β-CAS activity by 3 to 6 hours in soybean. The steady-state concentration of endogenous cyanide in soybean was 1 micromolar, based on rates of ethylene production and cyanide metabolism by β-CAS. This agreed with the determination of endogenous cyanide by both distillation and isotope dilution. Given the apparent compartmentalization of β-CAS in mitochondria and the localization of ethylene/HCN production at the plasmalemma and/or tonoplast, our results suggest that extra-mitochondrial accumulation of cyanide in the cytoplasm may occur. If so, the activity of cyanide-sensitive cytoplasmic enzymes could be adversely affected, thus possibly contributing to the toxicity of 2,4-D.  相似文献   

3.
4.
The activity of ATP sulfurylase, cysteine synthase, and cystathionine β-lyase was measured in crude leaf extracts, bundle sheath strands, and mesophyll and bundle sheath chloroplasts to determine the location of sulfate assimilation of C4 plant leaves. Almost all the ATP sulfurylase activity was located in the bundle sheath chloroplasts while cysteine synthase and cystathionine β-lyase activity was located, in different proportions, in both chloroplast types.

A new spectrophotometric assay for measuring ATP sulfurylase activity is also described.

  相似文献   

5.
The action of ethylene on the capacity of plant tissues to metabolize cyanide to β-cyanoalanine was examined. Beta-cyanoalanine synthase (EC 4.4.1.9) catalyzes the reaction between cyanide and cysteine to form β-cyanoalanine and hydrogen sulfide. Levels of β-cyanoalanine synthase activity in tissues of 6 day old etiolated pea (Pisum sativum) seedlings were enhanced severalfold by 1 microliter per liter ethylene. The promotive effect of ethylene increased with increasing ethylene concentrations from 0.01 to 100 microliters per liter and with the period of exposure from 3 to 24 hours. Ethylene enhanced β-cyanoalanine synthase activity in all regions of the seedling (shoots and roots, internodal regions, cotyledons). The promotive effect was eliminated by norbornadiene, a competitive inhibitor of ethylene action. Levels of β-cyanoalanine synthase in seedlings of four other dicots (Phaseolus aureas, Glycine max, Lactuca sativa, Sinapis arvensis) and two monocots (Hordeum vulgares, Triticum aestivum) were also increased in response to ethylene. Our results suggest an important regulatory role for ethylene in the metabolism of cyanide by higher plants.  相似文献   

6.
Yip WK  Yang SF 《Plant physiology》1988,88(2):473-476
HCN is the putative product of C-1 and amino moieties of 1-aminocyclopropane-1-carboxylic acid (ACC) during its conversion to ethylene. In apple (Malus sylvestrus Mill.) slices or auxin-treated mungbean (Vigna radiata L.) hypocotyls, which produced ethylene at high rates, the steady state concentration of HCN was found to be no higher than 0.2 micromolar, which was too low to inhibit respiration (reported Ki for HCN to inhibit respiration was 10-20 micromolar). However, these tissues became cyanogenic when treated with ACC, the precursor of ethylene, and with 2-aminoxyacetic acid, which inhibits β-cyanoalanine synthase, the main enzyme to detoxify HCN; the HCN levels in these tissues went up to 1.7 and 8.1 micromolar, respectively. Although ethylene production by avocado (Persea gratissima) and apple fruits increased several hundred-fold during ripening, β-cyanoalanine synthase activity increased only one- to two-fold. These findings support the notion that HCN is a co-product of ethylene biosynthesis and that the plant tissues possess ample capacity to detoxify HCN formed during ethylene biosynthesis so that the concentration of HCN in plant tissues is kept at a low level.  相似文献   

7.
Fructan synthesis was induced in excised primary leaf blades of Hordeum vulgare L. cv Gerbel by illumination in 30 millimolar fructose. This treatment induced a 26-fold increase of sucrose-sucrose-fructosyltransferase (SST, EC 2.4.1.99) activity within 24 hours. Acid invertase (EC 3.2.1.26) activity remained about constant. By preparing protoplasts from induced leaves, approximately 80% of the invertase activity was removed with the cell walls while SST was retained. The protoplast homogenate was used to partially purify and characterize SST. Acid precipitation (pH 4.75) and anion exchange chromatography (fast protein liquid chromatography on Mono `Q') resulted in a recovery of about 80% of total SST activity. The principal activity (SST 1), accounting for 85% of the activity recovered, was purified about 200-fold. It was essentially free of invertase activity and catalyzed the synthesis of a trisaccharide which co-chromatographed with isokestose (1F-β-fructosylsucrose). The remaining 15% of SST activity (SST 2) was purified about 35-fold. It retained substantial invertase activity and catalyzed the synthesis of only one trisaccharide which co-chromatographed with kestose (6F-β-fructosylsucrose). It is concluded that barley leaves which store mainly fructan of the phlein type (β-2-6 polyfructosylsucrose), nevertheless contain sucrose-sucrose 1F-β-d-fructosyltransferase as the key enzyme of fructan synthesis.  相似文献   

8.
The amylases of the second leaves of barley seedlings (Hordeum vulgare L. cv Betzes) were resolved into eight isozymes by isoelectric focusing, seven of which were β-amylase and the other, α-amylase. The α-amylase had the same isoelectric point as one of the gibberellin-induced α-amylase isozymes in the aleurone layer. This and other enzyme characteristics indicated that the leaf isozyme corresponded to the type A aleurone α-amylase (low pI group). Crossing experiments indicated that leaf and type A aleurone isozymes resulted from expression of the same genes.

In unwatered seedlings, leaf α-amylase increased as leaf water potential decreased and ABA increased. Water stress had no effect on β-amylase. α-Amylase occurred uniformly along the length of the leaf but β-amylase was concentrated in the basal half of the leaf. Cell fractionation studies indicated that none of the leaf α-amylase occurred inside chloroplasts.

Leaf radiolabeling experiments followed by extraction of α-amylase by affinity chromatography and immunoprecipitation showed that increase of α-amylase activity involved synthesis of the enzyme. However, water stress caused no major change in total protein synthesis. Hybridization of a radiolabeled α-amylase-related cDNA clone to size fractionated RNA showed that water-stressed leaves contained much more α-amylase mRNA than unstressed plants. The results of these and other studies indicate that regulation of gene expression may be a component in water-stress induced metabolic changes.

  相似文献   

9.
Vacuoles isolated from Nicotiana rustica var brasilia have been shown to contain significant levels of glycosidase activity when assayed using p-nitrophenyl-glycosides as substrates. The substrate specificity for the glycosidases in the vacuolar fraction closely paralleled that found in the protoplasts, and the leaf tissue from which the vacuoles were isolated. The substrate specificity of the vacuolar enzyme(s) was different from glycosidic activity found in the commercial digestive enzyme preparations used to isolate the protoplasts from leaf tissue. It was demonstrated that 70 to 90% of the glycosidases that were found in the protoplasts appeared to be localized within the vacuole, when the p-nitrophenyl substrates α- and β-;d-galactose, β-d-glucose, and α-d-mannose were used. Neither the vacuolar nor the protoplast enzymes were active towards the naturally occurring phenolic glycoside, rutin. α-Mannosidase appears to be a valuable marker enzyme for vacuoles isolated from mesophyll leaf cells of tobacco.  相似文献   

10.
The activity and extent of light activation of three photosynthetic enzymes, pyruvate,Pi dikinase, NADP-malate dehydrogenase (NADP-MDH), and fructose 1,6-bisphosphatase (FBPase), were examined in maize (Zea mays var Royal Crest) leaves relative to the rate of photosynthesis during induction and under varying light intensities. There was a strong light activation of NADP-MDH and pyruvate,Pi dikinase, and light also activated FBPase 2- to 4-fold. During the induction period for whole leaf photosynthesis at 30°C under high light, the time required to reach half-maximum activation for all three enzymes was only 1 minute or less. After 2.5 minutes of illumination the enzymes were fully activated, while the photosynthetic rate was only at half-maximum activity, indicating that factors other than enzyme activation limit photosynthesis during the induction period in C4 plants.

Under steady state conditions, the light intensity required to reach half-maximum activation of the three enzymes was similar (300-400 microEinsteins per square meter per second), while the light intensity required for half-maximum rates of photosynthesis was about 550 microEinsteins per square meter per second. The light activated levels of NADP-MDH and FBPase were well in excess of the in vivo activities which would be required during photosynthesis, while maximum activities of pyruvate,Pi dikinase were generally just sufficient to accommodate photosynthesis, suggesting the latter may be a rate limiting enzyme.

There was a large (5-fold) light activation of FBPase in isolated bundle sheath strands of maize, whereas there was little light activation of the enzyme in isolated mesophyll protoplasts. In mesophyll protoplasts the enzyme was largely located in the cytoplasm, although there was a low amount of light-activated enzyme in the mesophyll chloroplasts. The results suggest the chloroplastic FBPase in maize is primarily located in the bundle sheath cells.

  相似文献   

11.
Oba K  Conn EE  Canut H  Boudet AM 《Plant physiology》1981,68(6):1359-1363
The distribution of the glucosides of trans- and cis-2-hydroxy cinnamic acid and of the β-glucosidase which hydrolyzes the latter glucoside was examined in preparations of epidermal and mesophyll tissue obtained from leaves of sweet clover (Melilotus alba Desr.). The concentrations of glucosides in the two tissues were about equal when compared on the basis of fresh or dry weight. Inasmuch as the epidermal layers account for no more than 10% of the leaf volume, the mesophyll tissue contains 90% or more of the glucosides. Vacuoles isolated from mesophyll protoplasts contained all of the glucosides present initially in the protoplasts.  相似文献   

12.
Previous studies on the activity of the rice Gα promoter using a β-Glucuronidase (GUS) reporter construct indicated that Gα expression was highest in developing organs and changed in a developmental stage-dependent manner. In this paper, GUS activity derived from the rice Gα promoter was analyzed in seeds and developing leaves. In seeds, GUS activity was detected in the aleurone layer, embryo, endosperm and scutellar epithelium. In developing leaves, the activity was detected in the mesophyll tissues, phloem and xylem of the leaf sheath and in the mesophyll tissue of the leaf blade. The activity in the aleurone layer and scutellar epithelium suggests that the Gα subunit may be involved in gibberellin signaling. The activity in the mesophyll tissues of the leaf blade suggests that the Gα subunit may be related to the intensity of disease resistance. The pattern of the activity in the developing leaf also indicates that the expression of Gα follows a developmental profile at the tissue level.Key words: expression pattern, Gα subunit, GUS staining pattern, heterotrimeric G protein, riceThe rice mutant d1 is deficient in the heterotrimeric G protein α subunit (Gα). Recently it was found that the dwarfism phenotype of d1 is due to a reduction in cell numbers.1 This discovery has led to new questions regarding how rice Gα regulates cell number, and which other signaling molecules are involved in this process in various tissues and at different development stages. Studies of d1 suggest that rice Gα participates in both gibberellin signaling24 and brassinosteroid signaling.58 Promoter studies using the β-Glucuronidase (GUS) reporter indicate that Gα expression is highest in developing organs.1 In this paper, we report on the expression pattern of a Gα promoter::GUS construct in seeds and developing leaves of rice.  相似文献   

13.
The anion contents of young barley leaves and of mesophyll protoplasts from the leaves was compared. Anion loss from the protoplasts during isolation was small. Although only about 60% of the leaf cells were mesophyll cells, phosphate and sulfate contents of the mesophyll cells accounted for almost 90% of the leaf contents. Chloride accumulated in the leaf epidermis. The rapid isolation of vacuoles from mesophyll protoplasts permitted the determination of vacuolar ion concentrations. Sodium and nitrate levels were very low in the cytoplasm, and much higher in the vacuole. When barley plants were grown in the presence of low NaCl levels, chloride concentrations were comparable in cytoplasm and vacuole, and similar observations were made with sulfate. Cytoplasmic phosphate concentrations were close to 30 millimolar and potassium concentrations 100 millimolar. During a 30 minute incubation period at room temperature, anion contents of isolated vacuoles decreased considerably. Efflux of NO3 was faster than that of Cl. Phosphate and sulfate crossed the tonoplast only slowly. 4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid partially inhibited the efflux of nitrate and, to a lesser extent, that of chloride. Decreased efflux was also observed in the presence of MgATP. In remarkable contrast, p-chloromercuribenzene sulfonate and HgCl2 stimulated the efflux of nitrate and chloride, but not of phosphate. Labeled chloride was taken up by isolated vacuoles. The apparent Km for chloride uptake at low chloride concentrations was 2.3 millimolar. At elevated chloride concentrations, chloride did not display saturation characteristics but, rather, characteristics of a diffusional process. Uptake was stimulated by ATP.  相似文献   

14.
Metabolism of hydrogen cyanide by higher plants   总被引:13,自引:5,他引:8       下载免费PDF全文
Miller JM  Conn EE 《Plant physiology》1980,65(6):1199-1202
A survey has been made of the occurrence and distribution of three enzymes which metabolize cyanide in a variety of higher plants including both cyanogenic and non-cyanogenic species. The enzymes investigated were β-cyanoalanine synthase, rhodanese and formamide hydrolyase. β-Cyanoalanine synthase was found to be present in every higher plant tested whereas rhodanese was found to occur far less commonly in plants. Formamide hydrolyase activity was not detected in any of the higher plants tested.  相似文献   

15.
Isolation of mesophyll protoplasts from mature leaves of soybeans   总被引:3,自引:2,他引:1       下载免费PDF全文
Lin W 《Plant physiology》1983,73(4):1067-1069
A procedure based on a combined cellulase-Pectolyase Y-23 enzyme digestion and metrizamide-sorbitol gradient purification protocol was developed for isolating mesophyll protoplasts from mature leaves of soybean (Glycine max L. Merr.). Based on chlorophyll content, this procedure results in a 10 to 15% protoplast yield from fully expanded mature leaves and a 20 to 30% yield from young (expanding) leaves within 3 hours. Isolated protoplasts displayed high rates of HCO3-dependent photosynthesis; greater than 75 micromoles O2 evolved per milligram chlorophyll per hour at 25°C. This photosynthetic rate is comparable to that of mesophyll cells isolated mechanically from the same leaves.  相似文献   

16.
In the seeds of Hevea brasiliensis, the cyanogenic monoglucoside linamarin (2-β-d-glucopyranosyloxy-2-methylpropionitrile) is accumulated in the endosperm. After onset of germination, the cyanogenic diglucoside linustatin (2-[6-β-d-glucosyl-β-d-glucopyranosyloxy]-2- methylpropionitrile) is formed and exuded from the endosperm of Hevea seedlings. At the same time the content of cyanogenic monoglucosides decreases. The linustatin-splitting diglucosidase and the β-cyanoalanine synthase that assimilates HCN, exhibit their highest activities in the young seedling at this time. Based on these observations the following pathway for the in vivo mobilization and metabolism of cyanogenic glucosides is proposed: storage of monoglucosides (in the endosperm)—glucosylation—transport of the diglucoside (out of the endosperm into the seedling)—cleavage by diglucosidase—reassimilation of HCN to noncyanogenic compounds. The presence of this pathway demonstrates that cyanogenic glucosides, typical secondary plant products serve in the metabolism of developing plants as N-storage compounds and do not exclusively exhibit protective functions due to their repellent effect.  相似文献   

17.
Epidermal and mesophyll protoplasts, prepared from leaf blades of 6-day-old light-grown Sorghum bicolor seedlings were separated by differential sedimentation and assayed for a number of enzymes. The epidermal protoplasts contained higher levels of NADPH-cytochrome c reductase (EC 1.6.2.4), triose phosphate isomerase (EC 5.3.1.1), phosphoenolpyruvate carboxylase (EC 4.1.1.31), and a UDP-glucose:cyanohydrin β-glucosyl transferase (EC 2.4.1.85), but lower levels of NADP+ triosephosphate dehydrogenase (EC 1.2.1.13) than did mesophyll protoplasts. When protoplast preparations were lysed and applied to linear sucrose density gradients, triosephosphate isomerase was found to be present in epidermal plastids. A significant fraction (41%) of the glucosyl transferase activity was also associated with the epidermal plastids.  相似文献   

18.
When auxin was omitted during either the preparation or the culture of tobacco mesophyll protoplasts, as well as during both periods, synthesis of β-glucanase was spontaneously induced. In contrast, when protoplasts were prepared and cultured in the presence of 16 micromolar 1-naphthaleneacetic acid (optimal concentration for protoplast division), the expression of β-glucanase was maintained close to the minimal level observed in tobacco leaves. This inhibitory effect was only promoted by active auxins (1-naphthaleneacetic acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, and 3-indoleacetic acid) but not by inactive auxin analogs. Tobacco protoplasts responded to exogenous elicitors from the cell wall of Phytophthora megasperma glycinea (Pmg) by accumulating β-glucanase in the presence of 16 micromolar 1-naphthaleneacetic acid. At higher auxin concentrations, the elicitor-induced β-glucanase synthesis was inhibited. Naphthaleneacetic acid concentration (3 × 10−5 molar) required to inhibit by 50% the expression of this defense reaction triggered by a near-optimal elicitor concentration was about 100 times higher than that sufficient to inhibit by 50% the spontaneous expression in nonelicited protoplasts. This is the first demonstration of an auxin-fungal elicitor interaction in the control of a defined defense reaction. The above observations were extended to soybean cell protoplasts. The Pmg elicitor-induced stimulation of the synthesis of pathogenesis related P17 polypeptides and of a 39-kilodalton peptide immunologically related to tobacco β-glucanase was only observed when the spontaneous accumulation of these proteins was inhibited in auxin-treated protoplasts.  相似文献   

19.
Saeed M  Duke SH 《Plant physiology》1990,94(4):1813-1819
Pea (Pisum sativum L.) tissues with reduced chloroplast density (e.g. petals and stems) or function (i.e. senescent leaves and leaves darkened for prolonged periods) were surveyed to determine whether tissues with genetically or environmentally reduced chloroplast density and/or function also have significantly different amylolytic enzyme activities and/or isoform patterns than leaf tissues with totally competent chloroplasts. Native PAGE followed by electrophoretically blotting through a starch or β-limit dextrin containing gel and KI/I2 staining revealed that the primary amylases in leaves, stems, petals, and roots were the primarily vacuolar β-amylase (EC 3.2.1.2) and the primarily apoplastic α-amylase (EC 3.2.1.1). Among tissues of light grown pea plants, petals contained the highest levels of total amylolytic (primarily β-amylase) activity and considerably higher ratios of β- to α-amylase. In aerial tissues there was an inverse relationship between chlorophyll and starch concentration, and β-amylase activity. In sections of petals and stems there was a pronounced inverse relationship between chlorophyll concentration and the activity of α-amylase. Senescing leaves of pea, as determined by age, and protein and chlorophyll content, contained 3.8-fold (fresh weight basis) and 32-fold (protein basis) higher α-amylase activity than fully mature leaves. Leaves maintained in darkness for 12 days displayed a 14-fold (fresh weight basis) increase in α-amylase activity over those grown under continuous light. In senescence and prolonged darkness studies, the α-amylase that was greatly increased in activity was the primarily apoplastic α-amylase. These studies indicate that there is a pronounced inverse relationship between chloroplast function and levels of apoplastic α-amylase activity and in some cases an inverse relationship between chloroplast density and/or function and vacuolar β-amylase activity.  相似文献   

20.
Tobacco (Nicotiana tabacum) mesophyll protoplasts synthesize six basic proteins (a, a′, a1, b, b′, and c) which are undetectable in the leaf and whose synthesis is reduced by auxin (Y Meyer, L Aspart, Y Chartier [1984] Plant Physiol 75: 1027-1033). Polypeptides a, a′, and a1 were shown to have similar mobilities on two-dimensional electrophoresis as one 1,3-β-glucanase and two chitinases from tobacco mosaic virus-infected leaves. In immunoblotting experiments, polypeptide a was recognized by specific antibodies raised against the 1,3-β-glucanase and a′ and a1 reacted with anti-chitinase antibodies. Similarly, b and b′ comigrated with osmotin and its neutral counterpart, two proteins characteristic of salt-adapted tobacco cells, and reacted with anti-osmotin antibodies. In addition it has been shown that 1,3-β-glucanase and chitinase activities increased at the same time as a, a′, and a1 accumulated in cultivated protoplasts. Finally, polypeptide c was also detected in tobacco mosaic virus-infected leaves but could not be identified as any of the pathogenesis-related proteins characterized so far in tobacco. Thus, cultivated tobacco protoplasts synthesize and accumulate typical stress proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号