首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赖氨酸乙酰化是把来自于乙酰CoA的乙酰基团转移到靶蛋白赖氨酸的ε-NH3+上,是蛋白质翻译后的一种可逆修饰过程,受乙酰基转移酶(HAT/KAT)和去乙酰化酶(HDAC/KDAC)的共同调节。赖氨酸乙酰化通过对细胞内多种蛋白质的修饰调节,可以控制体内多种代谢过程,如调节糖类、脂类、氨基酸、核苷酸及次级代谢物的代谢等.因而,细胞内赖氨酸乙酰化失调,可影响与代谢相关的多种疾病,如肥胖症、糖尿病和心血管疾病等。随着对蛋白质乙酰化研究的深入,发现赖氨酸乙酰化与细胞免疫状态及神经退行性疾病,如阿尔茨海默氏症和亨廷顿综合征等也有关。对近年来赖氨酸乙酰化在代谢调控及与代谢相关疾病如心血管疾病和免疫代谢疾病中的分子调控机制进行综述。  相似文献   

2.
3.
4.
Skeletal muscle atrophy is a consequence of several physiological and pathophysiological conditions including muscle disuse, aging and diseases such as cancer and heart failure. In each of these conditions, the predominant mechanism contributing to the loss of skeletal muscle mass is increased protein turnover. Two important mechanisms which regulate protein stability and degradation are lysine acetylation and ubiquitination, respectively. However our understanding of the skeletal muscle proteins regulated through acetylation and ubiquitination during muscle atrophy is limited. Therefore, the purpose of the current study was to conduct an unbiased assessment of the acetylation and ubiquitin-modified proteome in skeletal muscle during a physiological condition of muscle atrophy. To induce progressive, physiologically relevant, muscle atrophy, rats were cast immobilized for 0, 2, 4 or 6 days and muscles harvested. Acetylated and ubiquitinated peptides were identified via a peptide IP proteomic approach using an anti-acetyl lysine antibody or a ubiquitin remnant motif antibody followed by mass spectrometry. In control skeletal muscle we identified and mapped the acetylation of 1,326 lysine residues to 425 different proteins and the ubiquitination of 4,948 lysine residues to 1,131 different proteins. Of these proteins 43, 47 and 50 proteins were differentially acetylated and 183, 227 and 172 were differentially ubiquitinated following 2, 4 and 6 days of disuse, respectively. Bioinformatics analysis identified contractile proteins as being enriched among proteins decreased in acetylation and increased in ubiquitination, whereas histone proteins were enriched among proteins increased in acetylation and decreased in ubiquitination. These findings provide the first proteome-wide identification of skeletal muscle proteins exhibiting changes in lysine acetylation and ubiquitination during any atrophy condition, and provide a basis for future mechanistic studies into how the acetylation and ubiquitination status of these identified proteins regulates the muscle atrophy phenotype.  相似文献   

5.
Lysine propionylation and butyrylation are protein modifications that were recently identified in histones. The molecular components involved in the two protein modification pathways are unknown, hindering further functional studies. Here we report identification of the first three in vivo non-histone protein substrates of lysine propionylation in eukaryotic cells: p53, p300, and CREB-binding protein. We used mass spectrometry to map lysine propionylation sites within these three proteins. We also identified the first two in vivo eukaryotic lysine propionyltransferases, p300 and CREB-binding protein, and the first eukaryotic depropionylase, Sirt1. p300 was able to perform autopropionylation on lysine residues in cells. Our results suggest that lysine propionylation, like lysine acetylation, is a dynamic and regulatory post-translational modification. Based on these observations, it appears that some enzymes are common to the lysine propionylation and lysine acetylation regulatory pathways. Our studies therefore identified first several important players in lysine propionylation pathway.  相似文献   

6.
蛋白质的赖氨酸乙酰化修饰可以定义为在蛋白质的赖氨酸残基上添加或移除一个乙酰基团,这个过程是由乙酰化酶和脱乙酰酶调控的.真核生物细胞核内组蛋白和转录因子的可逆乙酰化修饰对基因表达调控的机制早已研究得比较清楚.1996年以来,一些独立的研究也陆续发现,参与到其他生命活动中的蛋白质存在着乙酰化修饰情况,表明乙酰化可能在生命活动中发挥着广泛的调节作用.然而直到2009年,高通量的蛋白质质谱分析技术才使得在蛋白质组水平上研究乙酰化修饰成为可能,并发现蛋白质乙酰化普遍存在.学者们发现,乙酰化修饰是一个在细胞核或细胞质的亚细胞器内广泛存在的翻译后修饰调控机制,可能参与了染色体重塑、细胞周期调控、细胞骨架的大分子运输、新陈代谢等多种生命活动.本文详细总结代谢酶的乙酰化修饰对新陈代谢调控的关键作用,并说明代谢酶的乙酰化修饰是一个从原核生物到真核生物进化上高度保守的调控机制.  相似文献   

7.
Environmental stresses are important factors causing male infertility which attracts broad attention. Protein acetylation is a pivotal post-translational modification and modulates diverse physiological processes including spermatogenesis. In this study, we employed quantitative proteomic techniques and bioinformatics tools to analyze the alterations of acetylome profile of mouse testis after heat shock and X-irradiation. Overall, we identified 1139 lysine acetylation sites in 587 proteins in which 1020 lysine acetylation sites were quantified. The Gene Ontology analysis showed that the major acetylated protein groups were involved in generation of precursor metabolites and metabolic processes, and were localized predominantly in cytosolic and mitochondrial. Compared to the control group, 36 sites of 28 acetylated proteins have changed after heat shock, and 49 sites of 43 acetylated proteins for X-ray exposure. Some of the differentially acetylated proteins have been reported to be associated with the progression of spermatogenesis and male fertility. We observed the up-regulated acetylation level change on testis specific histone 2B and heat shock protein upon heat treatment and a sharp decline of acetylation level on histone H2AX under X-ray treatment, suggesting their roles in male germ cells. Notably, the acetylation level on K279 of histone acetyltransferase (Kat7) was down-regulated in both heat and X-ray treatments, indicating that K279 may be a key acetylated site and affect its functions in spermatogenesis. Our results reveal that protein acetylation might add another layer of complexity to the regulation for spermatogenesis, and further functional studies of these proteins will help us elucidate the mechanisms of abnormal spermatogenesis.  相似文献   

8.
Protein lysine acetylation is a reversible and highly regulated post‐translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology.  相似文献   

9.
10.
11.
蛋白质赖氨酸乙酰化是植物中普遍存在的重要蛋白质翻译后修饰过程。过去的研究主要集中在染色体组蛋白的乙酰化修饰及其调控机制。目前,随着定量乙酰化蛋白质组学技术的发展,大量非组蛋白赖氨酸乙酰化修饰被发现,其在植物中存在的普遍性及其生理功能的重要性也随之凸显。非组蛋白赖氨酸乙酰化修饰在植物不同组织、器官和细胞器中大量存在,广泛参与植物生长发育的各种代谢过程的调控,并在植物应答和适应逆境胁迫中发挥作用。综述了近年来植物非组蛋白赖氨酸乙酰化修饰的蛋白质组学研究进展,阐明乙酰化修饰在植物不同组织和亚细胞中的分布特征以及在植物生长发育和逆境胁迫响应中的作用,并阐述乙酰化修饰与其他蛋白质翻译后修饰的交互作用,最后对未来的研究进行展望和讨论。  相似文献   

12.
Mischerikow N  Heck AJ 《Proteomics》2011,11(4):571-589
Protein modifications are biologically important events that may be studied by mass spectrometry-based high-throughput proteome analyses. In recent years, several new technologies have emerged that have widened and deepened the targeted analysis of one important, albeit functionally ill-defined modification, namely protein acetylation. This modification can take place both co- and post-translationally by the transfer of acetyl groups under the catalysis of acetyltransferases. The acetyl group can modify either the α-amino group at the N-terminus, so-called N-terminal acetylation, or the ε-amino group on the side chain of lysine residues. Here, we review several emerging targeted technologies to chart both N-terminal acetylation as well as acetylation at the lysine side chain, on a proteome-wide scale, highlighting in particular studies that have expanded the biological knowledge on the appearance and function of these common but functionally still less investigated co- and post-translational modifications.  相似文献   

13.
Lysine acetylation is a well-studied post-translational modification on both histone and nonhistone proteins. More than 2000 acetylated proteins and 4000 lysine acetylation sites have been identified by large scale mass spectrometry or traditional experimental methods. Although over 20 lysine (K)-acetyl-transferases (KATs) have been characterized, which KAT is responsible for a given protein or lysine site acetylation is mostly unknown. In this work, we collected KAT-specific acetylation sites manually and analyzed sequence features surrounding the acetylated lysine of substrates from three main KAT families (CBP/p300, GCN5/PCAF, and the MYST family). We found that each of the three KAT families acetylates lysines with different sequence features. Based on these differences, we developed a computer program, Acetylation Set Enrichment Based method to predict which KAT-families are responsible for acetylation of a given protein or lysine site. Finally, we evaluated the efficiency of our method, and experimentally detected four proteins that were predicted to be acetylated by two KAT families when one representative member of the KAT family is over expressed. We conclude that our approach, combined with more traditional experimental methods, may be useful for identifying KAT families responsible for acetylated substrates proteome-wide.  相似文献   

14.
15.
16.
17.
Regulation of protein turnover by acetyltransferases and deacetylases   总被引:3,自引:0,他引:3  
  相似文献   

18.
19.
20.
Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号