首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To analyze the orientation in target cell membranes of the pediocin-like bacteriocin (antimicrobial peptide) curvacin A, 55 variants were generated by site-directed mutagenesis and their potencies against four different target cells determined. The result suggest that the somewhat hydrophilic short central helix (residues 19 to 24), along with the N-terminal β-sheet-like structure (residues 1 to 16), inserts in the interface region of the target cell membrane, with Ala22 close to the hydrophobic core of the membrane. The following hinge region, with Gly28 as an important residue, may then form a turn wherein Gly28 becomes positioned near the border between the interface and the hydrophobic regions, thus permitting the longer and more-hydrophobic C-terminal helix (residues 29 to 41) to insert into the hydrophobic core of the membrane. This helix contains three glycine residues (G33, G37, and G40) that form a putative helix-helix-interacting GxxxGxxG motif. The replacement of any of these glycines with a larger residue was very detrimental, suggesting their possible involvement in helix-helix interactions with a membrane-embedded receptor protein.  相似文献   

3.
Most G protein-coupled receptors contain a conserved pair of extracellular cysteine residues that are predicted to form a disulfide bond linking the first and second extracellular loops. Previous studies have shown that this disulfide bond may be critical for ligand binding, receptor activation, and/or proper receptor folding. However, the potential importance of the two conserved cysteine residues for proper receptor cell surface localization has not been investigated systematically. To address this issue, we used the rat M3 muscarinic receptor as a model system. Most studies were carried out with a modified version of this receptor subtype (lacking potential N-glycosylation sites and the central portion of the third intracellular loop) that could be readily detected via western blot analysis. Cys-->Ala mutant receptors were generated, transiently expressed in COS-7 cells, and then examined for their subcellular distribution and functional properties. ELISA and immunofluorescence studies showed that the presence of both conserved cysteine residues (corresponding to C140 and C220 in the rat M3 muscarinic receptor sequence) is required for efficient expression of the M3 muscarinic receptor on the cell surface. On the other hand, these residues were found not to be essential for protein stability (determined via immunoblotting) and receptor-mediated G protein activation (studied in second messenger assays). These results shed new light on the functional role of the two extracellular cysteine residues present in most G protein-coupled receptors.  相似文献   

4.
5.
Hydrogen-exchange rates were measured for RNase T1 and three variants with Ala --> Gly substitutions at a solvent-exposed (residue 21) and a buried (residue 23) position in the helix: A21G, G23A, and A21G + G23A. These results were used to measure the stabilities of the proteins. The hydrogen-exchange stabilities (DeltaG(HX)) for the most stable residues in each variant agree with the equilibrium conformational stability measured by urea denaturation (DeltaG(U)), if the effects of D(2)O and proline isomerization are included [Huyghues-Despointes, B. M. P., Scholtz, J. M., and Pace, C. N. (1999) Nat. Struct. Biol. 6, 210-212]. These residues also show similar changes in DeltaG(HX) upon Ala --> Gly mutations (DeltaDeltaG(HX)) as compared to equilibrium measurements (DeltaDeltaG(U)), indicating that the most stable residues are exchanging from the globally unfolded ensemble. Alanine is stabilizing compared to glycine by 1 kcal/mol at a solvent-exposed site 21 as seen by other methods for the RNase T1 protein and peptide helix [Myers, J. K., Pace, C. N., and Scholtz, J. M. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 3833-2837], while it is destabilizing at the buried site 23 by the same amount. For the A21G variant, only local NMR chemical shift perturbations are observed compared to RNase T1. For the G23A variant, large chemical shift changes are seen throughout the sequence, although X-ray crystal structures of the variant and RNase T1 are nearly superimposable. Ala --> Gly mutations in the helix of RNase T1 at both helical positions alter the native-state hydrogen-exchange stabilities of residues throughout the sequence.  相似文献   

6.
Cell cycle regulation by galectin-12, a new member of the galectin superfamily   总被引:13,自引:0,他引:13  
Galectins are a family of beta-galactoside-binding animal lectins with conserved carbohydrate recognition domains (CRDs). Here we report the identification and characterization of a new galectin, galectin-12, which contains two domains that are homologous to the galectin CRD. The N-terminal domain contains all of the sequence elements predicted to form the two beta-sheets found in other galectins, as well as conserved carbohydrate-interacting residues. The C-terminal domain shows considerable divergence from the consensus sequence, and many of these conserved residues are not present. Nevertheless, the protein has lactose binding activity, most likely due to the contribution of the N-terminal domain. The mRNA for galectin-12 contains features coding for proteins with growth-regulatory functions. These include start codons in a context that are suboptimal for translation initiation and AU-rich motifs in the 3'-untranslated region, which are known to confer instability to mRNA. Galectin-12 mRNA is sparingly expressed or undetectable in many tissues and cell lines tested, but it is up-regulated in cells synchronized at the G(1) phase or the G(1)/S boundary of the cell cycle. Ectopic expression of galectin-12 in cancer cells causes cell cycle arrest at the G(1) phase and cell growth suppression. We conclude that galectin-12 is a novel regulator of cellular homeostasis.  相似文献   

7.
Cloned human dopamine D2 receptor cDNA was isolated from a pituitary cDNA library and found to encode an additional 29 amino acid residues in the predicted intracellular domain between transmembrane regions 5 and 6 relative to a previously described rat brain D2 receptor. Results from polymerase chain reactions as well as in situ hybridization revealed that mRNA encoding both receptor forms is present in pituitary and brain of both rat and man. The larger form was predominant in these tissues and, as shown in the rat, expressed by dopaminergic and dopaminoceptive neurons. Analysis of the human gene showed that the additional peptide sequence is encoded by a separate exon. Hence, the two receptor forms are generated by differential splicing possibly to permit coupling to different G proteins. Both receptors expressed in cultured mammalian cells bind [3H]spiperone with high affinity and inhibit adenylyl cyclase, as expected of the D2 receptor subtype.  相似文献   

8.
Tryptic peptides from two cyanogen bromide (CNBr) fragments CB II and CB III of the Ala chain of ricin D were sequenced by manual Edman degradation. Chymotryptic or peptic peptides from the two fragments were isolated by Dowex 1 x 2 column chromatography to obtain overlaps for the tryptic peptides, and the complete amino acid sequences of fragments CB II and III were established. The amino acid residues in fragments CB II and CB III accounted for 75 and 45 residues, respectively, of 260 residues in the Ala chain.

These sequences together with the sequence of fragment CBI described in the preceding paper established the complete sequence of the 260 amino acid residues in the Ala chain. Some structural characteristics of the protein are also discussed.  相似文献   

9.
Cytochrome P450 2E1 (CYP2E1) lacking the hydrophobic NH(2)-terminal hydrophobic transmembrane domain is specifically targeted to mitochondria, where it is processed to a soluble and catalytically active form (Delta2E1) with a mass of about 40 kDa. Small amounts of Delta2E1 were also observed in mitochondria isolated from rat liver, indicating that this form of CYP2E1 is also present in vivo. In the present study the mitochondrial targeting signal was identified and characterized by the use of several NH(2)-terminally truncated and mutated forms of CYP2E1 that were expressed in the mouse H2.35 hepatoma cell line. Two potential mitochondrial targeting sequences were identified in the NH(2) terminus of CYP2E1. Deletion of the first potential mitochondrial targeting sequence located between amino acids 50 and 65, as in Delta(2-64)2E1, still resulted in mitochondrial targeting and processing, but when, in addition to the first, the second potential mitochondrial targeting sequence located between amino acids 74 and 95 was also deleted, as in Delta(2-95)2E1, the mitochondrial targeting was abolished. Mutation of the four positively charged Arg and Lys residues present in this sequence to neutral Ala residues resulted in the abrogation of mitochondrial targeting. Deletion of a hydrophobic stretch of amino acids between residues 76 and 83 also abolished mitochondrial targeting and import. Once imported in the mitochondria, these constructs were further processed to the mature protein Delta2E1. It is concluded that mitochondrial targeting of CYP2E1 is mediated through a sequence located between residues 74 and 95 and that positively charged residues as well as a hydrophobic stretch present in the beginning of this sequence are essential for this process.  相似文献   

10.
Aspergilloglutamic peptidase (formerly called aspergillopepsin II) is an acid endopeptidase produced by Aspergillus niger var. macrosporus, with a novel catalytic dyad of a glutamic acid and a glutamine residue, thus belonging to a novel peptidase family G1. The mature enzyme is generated from its precursor by removal of the putative 41-residue propeptide and an 11-residue intervening peptide through autocatalytic activation. In the present study, the propeptide (Ala1-Asn41) and a series of its truncated peptides were chemically synthesized, and their effects on the enzyme activity and thermal stability were examined to identify the sequences and residues in the propeptide most critical to the inhibition and thermal stabilization. The synthetic propeptide was shown to be a potent competitive inhibitor of the enzyme (Ki = 27 nM at pH 4.0). Various shorter propeptide fragments derived from the central region of the propeptide had significant inhibitory effect, whereas their Ala scan-substituted peptides, especially R19A and H20A, showed only weak inhibition. Substitution of the Pro23-Pro24 sequence near His20 with an Ala-Ala sequence changed the peptide Lys18-Tyr25 to a substrate with His20 as the P1 residue. Furthermore, the propeptide was shown to be able to significantly protect the enzyme from thermal denaturation (DeltaTm = approximately 19 degrees C at pH 5.6). The protective potencies of the propeptide as well as truncated propeptides and their Ala scan-substituted peptides are parallel with their inhibitory potencies. These results indicate that the central part, and especially Arg19 and His20 therein, of the propeptide is most critical to the inhibition and thermal stabilization and that His20 interacts with the enzyme at or near the S1 site in a nonproductive fashion.  相似文献   

11.
The first and third extracellular loops (ECL) of G protein-coupled receptors (GPCRs) have been implicated in ligand binding and receptor function. This study describes the results of an alanine/leucine scan of ECLs 1 and 3 and loop-associated transmembrane (TM) domains of the secretin-like GPCR calcitonin receptor-like receptor which associates with receptor activity modifying protein 1 to form the CGRP receptor. Leu195Ala, Val198Ala and Ala199Leu at the top of TM2 all reduced αCGRP-mediated cAMP production and internalization; Leu195Ala and Ala199Leu also reduced αCGRP binding. These residues form a hydrophobic cluster within an area defined as the “minor groove” of rhodopsin-like GPCRs. Within ECL1, Ala203Leu and Ala206Leu influenced the ability of αCGRP to stimulate adenylate cyclase. In TM3, His219Ala, Leu220Ala and Leu222Ala have influences on αCGRP binding and cAMP production; they are likely to indirectly influence the binding site for αCGRP as well as having an involvement in signal transduction. On the exofacial surfaces of TMs 6 and 7, a number of residues were identified that reduced cell surface receptor expression, most noticeably Leu351Ala and Glu357Ala in TM6. The residues may contribute to the RAMP1 binding interface. Ile360Ala impaired αCGRP-mediated cAMP production. Ile360 is predicted to be located close to ECL2 and may facilitate receptor activation. Identification of several crucial functional loci gives further insight into the activation mechanism of this complex receptor system and may aid rational drug design.  相似文献   

12.
The erythrocytes of the marine polychaete Glycera dibranchiata contain a number of different, single-chain hemoglobins, some of which self-associate into a 'polymeric' fraction. An oligodeoxynucleotide probe was synthesized based on partial amino acid sequences determined by chemical methods, and used to screen a cDNA library constructed from the poly(A+)mRNA of Glycera erythrocytes (Simons, P.C. and Satterlee, J.D. (1989) Biochemistry 28, 8525-8530). The longest positive inserts found were sequenced using the dideoxy nucleotide chain termination method. One complete clone was obtained: clone 5A, 816 bases long, contained 59 bases of 5'-untranslated RNA, an open reading frame of 441 bases coding for 147 amino acids and a 3'-untranslated region of 316 bases. The derived amino acid sequence of Glycera globin P1 was in agreement with the partial amino acid sequences obtained by chemical methods. Three additional inserts obtained in the screening were also sequenced: the inferred amino acid sequences proved to be partial globin sequences which were different from each other and from the sequence of P1. Thus, the 'polymeric' fraction of the intracellular hemoglobin of Glycera probably consists of at least four different globin chains much like the 'monomeric' fraction. Comparison of the 'polymeric' sequence with the two known 'monomeric' sequences, M-II and M-IV, shows that they share 54 identical residues. At 74 positions, the identical residues in M-II and M-IV differ from the corresponding residue in P1, including at E-7, where P1 has a distal His, in contrast to Leu in M-II and M-IV. The alignment of Bashford et al. ((1987) J. Mol. Biol. 196, 199-216) and their templates were used to examine the principal differences between the two types of Glycera globin sequences. They appear to consist of uncommon surface amino acid residues at positions C6 (Phe vs. Ala), E10 (Val vs. Lys), E17 (Lys vs. Val), G1 (Arg vs. Lys), G10 (Met vs. Ala) and H5 (Arg vs. Lys). One or more of these residues could be responsible for the self-association exhibited by the 'polymeric' Glycera globins.  相似文献   

13.
The nucleotide sequence of a rat myosin light chain 2 gene   总被引:24,自引:4,他引:20       下载免费PDF全文
A rat myosin light chain 2 gene was characterized by nucleotide sequence and S1 mapping analyses. It contains seven exons separated by six introns. The corresponding mRNA is predicted to be 654 nucleotides long (excluding polyA sequences), with 5'-nontranslated, coding, and 3'-nontranslated lengths of 56, 510, and 88 nucleotides, respectively. The predicted amino acid sequence is identical to that from rabbit except that the rat sequence lacks one of two Gly residues located at positions 12 and 13 in the rabbit sequence. From the nucleotide sequence, nascent rat myosin light chain 2 is predicted to have Met Ala preceding Pro at the N-terminal end.  相似文献   

14.
Human galanin is a 30 amino acid neuropeptide that elicits a range of biological activities by interaction with G protein-coupled receptors. We have generated a model of the human GALR1 galanin receptor subtype (hGALR1) based on the alpha carbon maps of frog rhodopsin and investigated the significance of potential contact residues suggested by the model using site-directed mutagenesis. Mutation of Phe186 within the second extracellular loop to Ala resulted in a 6-fold decrease in affinity for galanin, representing a change in free energy consistent with hydrophobic interaction. Our model suggests interaction between Phe186 of hGALR1 and Ala7 or Leu11 of galanin. Receptor subtype specificity was investigated by replacement of residues in hGALR1 with the corresponding residues in hGALR2 and use of the hGALR2-specific ligands hGalanin(2-30) and [D-Trp2]hGalanin(1-30). The His267Ile mutant receptor exhibited a pharmacological profile corresponding to that of hGALR1, suggesting that His267 is not involved in a receptor-ligand interaction. The mutation Phe115Ala resulted in a decreased binding affinity for hGalanin and for hGALR2-specific analogues, indicating Phe115 to be of structural importance to the ligand binding pocket of hGALR1 but not involved in direct ligand interaction. Analysis of Glu271Trp suggested that Glu271 of hGALR1 interacts with the N-terminus of galanin and that the Trp residue in the corresponding position in hGALR2 is involved in receptor subtype specificity of binding. Our model supports previous reports of Phe282 of hGALR1 interacting with Trp2 of galanin and His264 of hGALR1 interacting with Tyr9 of galanin.  相似文献   

15.
FTY720 phosphate (FTY720P) is a high potency agonist for all the endothelial differentiation gene family sphingosine 1-phosphate (S1P) receptors except S1P receptor subtype 2 (S1P(2)). To map the distinguishing features of S1P(2) ligand recognition, we applied a computational modeling-guided mutagenesis strategy that was based on the high degree of sequence homology between S1P(1) and S1P(2). S1P(2) point mutants of the ligand-binding pocket were characterized. The head group-interacting residues Arg3.28, Glu3.29, and Lys7.34 were essential for activation. Mutation of residues Ala3.32, Leu3.36, Val5.41, Phe6.44, Trp6.48, Ser7.42, and Ser7.46, predicted to interact with the S1P hydrophobic tail, impaired activation by S1P. Replacing individual or multiple residues in the ligand-binding pocket of S1P(2) with S1P(1) sequence did not impart activation by FTY720P. Chimeric S1P(1)/S1P(2) receptors were generated and characterized for activation by S1P or FTY720P. The S1P(2) chimera with S1P(1) sequence from the N terminus to transmembrane domain 2 (TM2) was activated by FTY720P, and the S1P(2)(IC1-TM2)(S1P1) domain insertion chimera showed S1P(1)-like activation. Twelve residues in this domain, distributed in four motifs a-d, differ between S1P(1) and S1P(2). Insertion of (78)RPMYY in motif b alone or simultaneous swapping of five other residues in motifs c and d from S1P(1) into S1P(2) introduced FTY720P responsiveness. Molecular dynamics calculations indicate that FTY720P binding selectivity is a function of the entropic contribution to the binding free energy rather than enthalpic contributions and that preferred agonists retain substantial flexibility when bound. After exposure to FTY720P, the S1P(2)(IC1-TM2)(S1P1) receptor recycled to the plasma membrane, indicating that additional structural elements are required for the selective degradative trafficking of S1P(1).  相似文献   

16.
Arata Y  Baleja JD  Forgac M 《Biochemistry》2002,41(37):11301-11307
Using a combination of cysteine mutagenesis and covalent cross-linking, we have identified subunits in close proximity to specific sites within subunit B of the vacuolar (H(+))-ATPase (V-ATPase) of yeast. Unique cysteine residues were introduced into subunit B by site-directed mutagenesis, and the resultant V-ATPase complexes were reacted with the bifunctional, photoactivatable maleimide reagent 4-(N-maleimido)benzophenone (MBP) followed by irradiation. Cross-linked products were identified by Western blot using subunit-specific antibodies. Introduction of cysteine residues at positions Glu(106) and Asp(199) led to cross-linking of subunits B and E, at positions Asp(341) and Ala(424) to cross-linking of subunits B and D, and at positions Ala(15) and Lys(45) to cross-linking of subunits B and G. Using a molecular model of subunit B constructed on the basis of sequence homology between the V- and F-ATPases, the X-ray coordinates of the F(1)-ATPase, and energy minimization, Glu(106), Asp(199), Ala(15), and Lys(45) are all predicted to be located on the outer surface of the complex, with Ala(15) and Lys(45) located near the top of the complex furthest from the membrane. By contrast, Asp(341) and Ala(424) are predicted to face the interior of the A(3)B(3) hexamer. These results suggest that subunits E and G form part of a peripheral stalk connecting the V(1) and V(0) domains whereas subunit D forms part of a central stalk. Subunit D is thus the most likely homologue to the gamma subunit of F(1), which undergoes rotation during ATP hydrolysis and serves an essential function in rotary catalysis.  相似文献   

17.
The unique 88 amino acid N-terminal region of cAMP-specific phosphodiesterase-4D5 (PDE4D5) contains overlapping binding sites conferring interaction with the signaling scaffold proteins, betaarrestin and RACK1. A 38-mer peptide, whose sequence reflected residues 12 through 49 of PDE4D5, encompasses the entire N-terminal RACK1 Interaction Domain (RAID1) together with a portion of the beta-arrestin binding site. (1)H NMR and CD analyses indicate that this region has propensity to form a helical structure. The leucine-rich hydrophobic grouping essential for RACK1 interaction forms a discrete hydrophobic ridge located along a single face of an amphipathic alpha-helix with Arg34 and Asn36, which also play important roles in RACK1 binding. The Asn22/Pro23/Trp24/Asn26 grouping, essential for RACK1 interaction, was located at the N-terminal head of the amphipathic helix that contained the hydrophobic ridge. RAID1 is thus provided by a distinct amphipathic helical structure. We suggest that the binding of PDE4D5 to the WD-repeat protein, RACK1, may occur in a manner akin to the helix-helix interaction shown for G(gamma) binding to the WD-repeat protein, G(beta). A more extensive section of the PDE4D5 N-terminal sequence (Thr11-Ala85) is involved in beta-arrestin binding. Several residues within the RAID1 helix contribute to this interaction however. We show here that these residues form a focused band around the centre of the RAID1 helix, generating a hydrophobic patch (from Leu29, Val30 and Leu33) flanked by polar/charged residues (Asn26, Glu27, Asp28, Arg34). The interaction with beta-arrestin exploits a greater circumference on the RAID1 helix, and involves two residues (Glu27, Asp28) that do not contribute to RACK1 binding. In contrast, the interaction of RACK1 with RAID1 is extended over a greater length of the helix and includes Leu37/Leu38, which do not contribute to beta-arrestin binding. A membrane-permeable, stearoylated Val12-Ser49 38-mer peptide disrupted the interaction of both beta-arrestin and RACK1 with endogenous PDE4D5 in HEKB2 cells, whilst a cognate peptide with a Glu27Ala substitution selectively failed to disrupt PDE4D5/RACK1 interaction. The stearoylated Val12-Ser49 38-mer peptide enhanced the isoprenaline-stimulated PKA phosphorylation of the beta(2)-adrenergic receptors (beta(2)AR) and its activation of ERK, whilst the Glu27Ala peptide was ineffective in both these regards.  相似文献   

18.
A protease, phytolacain G, has been found to appear on CM-Sepharose ion-exchange chromatography of greenish small-size fruits of pokeweed, Phytolacca americana L, from ca. 2 weeks after flowering, and increases during fruit enlargement. Reddish ripe fruit of the pokeweed contained both phytolacain G and R. The molecular mass of phytolacain G was estimated to be 25.5 kDa by SDS-PAGE. Its amino acid sequence was reconstructed by automated sequence analysis of the peptides obtained after cleavage with Achromobacter protease I, chymotrypsin, and cyanogen bromide. The enzyme is composed of 216 amino acid residues, of which it shares 152 identical amino acid residues (70%) with phytolacain R, 126 (58%) with melain G, 108 (50%) with papain, 106 (49%) with actinidain, and 96 (44%) with stem bromelain. The amino acid residues forming the substrate binding S(2) pocket of papain, Tyr67, Pro68, Trp69, Val133, and Phe207, were predicted to be replaced by Trp, Met, His, Ala, and Ser in phytolacain G, respectively. As a consequence of these substitutions, the S(2) pocket is expected to be less hydrophobic in phytolacain G than in papain.  相似文献   

19.
5'-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA.   总被引:18,自引:0,他引:18  
C M Wei  A Gershowitz  B Moss 《Biochemistry》1976,15(2):397-401
The 5'-terminal oligonucleotides m7G(5')ppp(5')NmpNp and m7G(5')ppp(5')NmpNmpNp were isolated by DEAE-cellulose column chromatography after enzymatic digestion of 32P- or methyl-3H-labeled poly(A)" HeLa cell mRNA. The recovery of such oligonucleotides indicated that a high percentage of mRNA has blocked termini. The dimethylated nucleoside, N6, O2'-dimethyladenosine (m6Am), as well as the four common 2'-O-methylribonucleosides (Gm, Am, Um, Cm) were present in the second position linked through the triphosphate bridge to 7-methylguanosine (m7G) whereas little m6Am was in the third position. The only internal methylated nucleoside, N6-methyladenosine (m6A), was found exclusively as m6ApC and Apm6ApC after digestion with RNase A, T1, and alkaline phosphatase. Digestion with RNase A and alkaline phat pyrimidines are present in much smaller amounts or absent from this position. These results imply a considerable sequence specificity since there are thousands of different mRNA species in HeLa cells. Our studies are consistent with the following model of HeLa cell mRNA in which Nm may be m6Am, Gm, Cm, Um, or Am and one or more m6A residues are present at an unspecified internal location: m7G(5')ppp(5')Nm-(Nm)---(G or A)-m6A-C---(A)100-200A.  相似文献   

20.
The primary structure of the core protein of Semliki Forest virus has been established by protein chemical characterization of 102 peptides, generated by digestion with trypsin, pepsin, thermolysin, and by partial acid cleavage of the protein. Besides a difference in one position, the sequence as established by these experiments is in agreement with the sequence predicted from the nucleotide sequence of the mRNA [Garoff et al. (1980) Proc. Natl Acad. Sci. USA, 77, 6376-6380]. The core protein has a blocked N terminus, consists of 267 amino acid residues, and has the following amino acid composition: Asp12, Asn9, Thr16, Ser10, Glu11, Gln15, Pro23, Gly20, Ala23, Val19, Met8, Ile11, Leu9, Tyr7, Phe6, His7, Lys37, Arg15, Trp5, Cys4, and an Mr of 29919. It contains 22.1% basic amino acids, mainly lysines, compared with a total of 8.6% acidic residues. The resulting surplus of positive charge is located in the N-terminal half of the protein (predominantly arginines at positions 12-21 and lysines at positions 66-114). Other amino acids are also unevenly distributed; proline and glutamine are accumulated in the N-terminal half of the sequence whereas histidine, glycine and the acidic residues are mainly present in the C-terminal part. This distribution suggests that the virus core protein consists of two or more structural domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号