首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
At the timberline in the Central Alps, climatic conditions during winter frequently cause excessive drought stress (frost drought, 'Frosttrocknis'), which we hypothesized to induce cavitation in trees. We investigated the extent of winter-embolism in Norway spruce ( Picea abies (L.) Karst.) growing near the timberline and analysed adaptations in vulnerability and anatomy. We found conductivity losses of up to 100% at the highest elevation (2020 m) correlated with low water potentials down to − 4.0 MPa. Vulnerability thresholds (50% loss in conductivity) decreased from − 3.39 MPa at 800 m to − 3.88 MPa at 1600 m corresponding to a decrease in tracheid cross-sectional area as well as pit and pit pore diameters. These thresholds were lower than potentials measured in embolized twigs near the timberline at the sampling dates probably due to lower potentials and/or a role of freeze-thaw events earlier in winter. Data indicated refilling processes, which may be of particular relevance for trees at the timberline, since adaptations in drought-induced vulnerability failed to prevent winter-embolism.  相似文献   

4.
5.
Commercially used natural rubber (cis-1,4-polyisoprene) is a secondary metabolite of the rubber tree (Hevea brasiliensis). Previous studies have shown the involvement of a prenyl transferase in the final steps of natural rubber biosynthesis which includes polymerization of isopentenyl pyrophosphate into rubber. Using synthetic oligonucleotides corresponding to the partial amino acid sequences of this protein as probes to screen a laticifer-specific cDNA library, we have isolated a full-length cDNA which encodes a 47 kDa protein with strong homology to farnesyl diphosphate synthases from many species. The catalytic activity of this protein was confirmed by complementing the deletion yeast mutant. In Hevea, this gene is expressed in latex producing cells and in the epidermal region of the rubber plant suggesting a dual role for the protein in the biosyntheses of rubber and other isoprenoids. Although the expression level of this gene is not significantly affected by hormone treatment (e.g. ethylene), regeneration of latex due to tapping increases its expression level.  相似文献   

6.
Phosphoenolpyruvate carboxylase (PEPC) genes and cDNA sequences have so far been isolated from a broad range of angiosperm but not from gymnosperm species. We constructed a cDNA library from seedlings of Norway spruce (Picea abies) and identified cDNAs coding for PEPC. A full-length PEPC cDNA was sequenced. It consists of 3522 nucleotides and has an open reading frame (ORF) that encodes a polypeptide (963 amino acids) with a molecular mass of 109 551. The deduced amino acid sequence revealed a higher similarity to the C3-form PEPC of angiosperm species (86–88%) than to the CAM and C4 forms (76–84%). The putative motif (Lys/Arg-X-X-Ser) for serine kinase, which is conserved in all angiosperm PEPCs analysed so far, is also present in this gymnosperm sequence. Southern blot analysis of spruce genomic DNA under low-stringency conditions using the PEPC cDNA as a hybridization probe showed a complex hybridization pattern, indicating the presence of additional PEPC-related sequences in the genome of the spruce. In contrast, the probe hybridized to only a few bands under high-stringency conditions. Whereas this PEPC gene is highly expressed in roots of seedlings, a low-level expression can be detected in cotyledons and adult needles. A molecular phyiogeny of plant PEPC including the spruce PEPC sequence revealed that the spruce PEPC sequence is clustered with monocot and dicot C3-form PEPCs including the only dicot C4 form characterized so far.  相似文献   

7.
Bioindication can be carried out at different hierarchical levels, eg. cell, organism, and ecosystem. While the monitoring of damage by visible criteria (e.g. loss of needles) is connected with the organism as a whole, the monitoring of damage by biochemical indicators is above all connected with cell metabolism.
The degree of vitality of a tree can be ascertained through the integration of a number of biochemical parameters. Furthermore, a differential diagnosis of a particular stress pattern can be carried out because of the feedback pattern of several biochemical indicators. In order to describe and interpret biochemical or physiological changes that have been caused by a number of factors, multivariate statistical methods are being used more frequently. Apart from cluster and discriminant analysis, it is especially factor analysis which provides a helpful tool when dealing with problems in the field of environmental analysis. Factor analysis can be used for an integrating as well as a differentiating assessment.
Within the framework of forest damage research, numerous changes at the level of cell metabolism have been detected to which a bioindicative character can be attached. A number of physiological and biochemical parameters with bioindicative character concerning Norway spruce are presented.  相似文献   

8.
Cao R  Chen CK  Guo RT  Wang AH  Oldfield E 《Proteins》2008,73(2):431-439
We report the X-ray crystallographic structures of the bisphosphonate N-[methyl(4-phenylbutyl)]-3-aminopropyl-1-hydroxy-1,1-bisphosphonate (BPH-210), a potent analog of pamidronate (Aredia), bound to farnesyl diphosphate synthase (FPPS) from Trypanosoma brucei as well as to geranylgeranyl diphosphate synthase from Saccharomyces cerevisiae. BPH-210 binds to FPPS, together with 3 Mg(2+), with its long, hydrophobic phenylbutyl side-chain being located in the same binding pocket that is occupied by allylic diphosphates and other bisphosphonates. Binding is overwhelmingly entropy driven, as determined by isothermal titration calorimetry. The structure is of interest since it explains the lack of potency of longer chain analogs against FPPS, since these would be expected to have a steric clash with an aromatic ring at the distal end of the binding site. Unlike shorter chain FPPS inhibitors, such as pamidronate, BPH-210 is also found to be a potent inhibitor of human geranylgeranyl diphosphate synthase. In this case, the bisphosphonate binds only to the GGPP product inhibitory site, with only 1 (chain A) or 0 (chain B) Mg(2+), and DeltaS is much smaller and DeltaH is approximately 6 k cal more negative than in the case of FPPS binding. Overall, these results are of general interest since they show that some bisphosphonates can bind to more than one trans-prenyl synthase enzyme which, in some cases, can be expected to enhance their overall activity in vitro and in vivo.  相似文献   

9.
Plant class III peroxidases (POXs) take part in the formation of lignin and maturation of plant cell walls. However, only a few examples of such peroxidases from gymnosperm tree species with highly lignified xylem tracheids have been implicated so far. We report here cDNA cloning of three xylem-expressed class III peroxidase encoding genes from Norway spruce (Picea abies). The translated proteins, PX1, PX2 and PX3, contain the conserved amino acids required for heme-binding and peroxidase catalysis. They all begin with putative secretion signal propeptide sequences but diverge substantially at phylogenetic level, grouping to two subclusters when aligned with other class III plant peroxidases. In situ hybridization analysis on expression of the three POXs in Norway spruce seedlings showed that mRNA coding for PX1 and PX2 accumulated in the cytoplasm of young, developing tracheids within the current growth ring where lignification is occurring. Function of the putative N-terminal secretion signal peptides for PX1, PX2 and PX3 was confirmed by constructing chimeric fusions with EGFP (enhanced green fluorescent protein) and expressing them in tobacco protoplasts. Full-length coding region of px1 was also heterologously expressed in Catharanthus roseus hairy root cultures. Thus, at least the spruce PX1 peroxidase is processed via the endoplasmic reticulum (ER) most likely for secretion to the cell wall. Thereby, PX1 displays correct spatiotemporal localization for participation in the maturation of the spruce tracheid secondary cell wall.  相似文献   

10.
Diversity and differentiation among three populations representing the geographical domains commonly recognized within the natural distribution area of Picea abies were analysed by using a set of 292 AFLP (amplified fragment length polymorphism), SSR (single sequence repeat) and ESTP (expressed sequence tags polymorphism) markers. As usually observed in forest trees, results showed high within-population diversity (H(S) reaching 0.79) and low among-population differentiation (G(ST) approximately 2%). The genomic organization of differentiation was then investigated on the basis of a subsample of 150 AFLP, SSR and ESTP mapped markers. The number of the loci differentiating the Baltico-Nordic from the central European populations (25 loci) and, within the central European populations, the Alpine from the Hercyno-Carpathian populations (12 loci), were different. These 37 differentiated loci, with individual G(ST) values ranging from 0.008 to 0.20, were evenly distributed on all linkage groups and mostly followed the neutral expectations, suggesting genome-wide effects on differentiation. Nine of them however behave as 'outlier' loci indicating possible locus-specific selective effects. Contribution of ongoing evolutionary forces and historical effects to the geographical differentiation of the species are discussed.  相似文献   

11.
Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst)   总被引:1,自引:0,他引:1  
Endophytic bacteria from wooden plants and especially seed-associated endophytes are not well studied. Fresh seeds collected from four Norway spruce trees (Picea abies) from different locations in the Slovene subalpine region were surface-sterilised and dissected into a seed coat, embryo and endosperm. The presence of endophytes was detected by culturing methods and by direct amplification of the eubacterial 16S rDNA gene. Both approaches identified bacteria from genera Pseudomonas and Rahnella in the Norway spruce seeds. Both are known plant-associated bacteria with growth-promoting properties and biological control potential. We suggest that plant seeds could serve as a vector for transmission of beneficial bacteria.  相似文献   

12.
Farnesyl diphosphate is involved in rubber biosynthesis as an initiating substrate for both polyprenol and mushroom rubber. So far, we have isolated the cDNA of a farnesyl diphosphate synthase (FPS) for the first time from a rare rubber-producing mushroom, Lactarius chrysorrheus, by the degenerate RT-PCR technique based on sequence information of FPS genes from fungi and yeasts. The open reading frame was clarified to encode a protein of 381 amino acid residues with a calculated molecular weight of 42.9 kDa. The deduced amino acid sequence of L. chrysorrheus FPS showed about 50% identity with those of other fungi and yeasts as well as plants. We expressed the cDNA of L. chrysorrheus FPS in Escherichia coli as a glutathione-S-transferase (GST)-fusion protein. The purified obtained protein showed FPS activity in which geranyl diphosphate (GPP) served as primary substrate, with a 2.4-fold higher k(cat)/K(m) value for GPP than for dimethylallyl diphosphate (DMAPP).  相似文献   

13.
14.
As part of a long-term study of the chemical defenses of Norway spruce (Picea abies) against herbivores and pathogens, a phytochemical survey of the phenolics in the bark was carried out. Eight stilbene glucoside dimers, designated as piceasides A-H (1a-4b), were isolated as four 1:1 mixtures of inseparable diastereomers. Their structures were determined by extensive spectroscopic means including 1D (1H and 13C) and 2D NMR (1H-1H COSY, HSQC, HMBC, ROESY) spectra, and were supported by enzymatic hydrolysis and computational analysis.  相似文献   

15.
Freezing stress and membrane injury of Norway spruce (Picea abies) tissues   总被引:2,自引:0,他引:2  
Effects of sub-zero temperatures (−5 to −35°C) on the tissues of needles, buds and shoots of Norway spruce [ Picea abies (L.) Karst.] were studied. The freezing caused increased efflux of cellular electrolytes. Freezing injury of the primordial shoots and 1-year-old shoots was the result of the spontaneous freezing of a deep supercooled cellular water. The crystallization injures the cellular membranes leading to the loss of semipermeability and to the drastic efflux of K+. In the needles there was no deep supercooling of water and two patterns of changes in the membranes, depending upon the range of the applied temperatures, could be distinguished. At 0 to – 25°C, which do not kill the cells, we observed a disturbance in the membrane semipermeability as monitored by electrolytes efflux within a few hours after thawing of the needles. At lower temperatures (−35°C) we observed irreversible loss of the membrane semipermeability, and death of the tissue. Those changes occurred 10 h after thawing and were probably caused by the released lytic enzymes and some toxic compounds, which acted on the cellular membranes.  相似文献   

16.
Valcu CM  Lalanne C  Plomion C  Schlink K 《Proteomics》2008,8(20):4287-4302
Although tree species typically exhibit low genetic differentiation between populations, ecotypes adapted to different environmental conditions can vary in their capacity to withstand and recover from environmental stresses like heat stress. Two month old seedlings of a Picea abies ecotype adapted to high elevation showed lower level of thermotolerance and higher level of tolerance to oxidative stress relative to a low elevation ecotype. Protein expression patterns following exposure to severe heat stress of the two ecotypes were compared by means of 2-DE. Several proteins exhibiting ecotype and tissue specific expression were identified by MS/MS. Among them, small heat shock proteins of the HSP 20 family and proteins involved in protection from oxidative stress displayed qualitative and quantitative differences in expression between the ecotypes correlated with the observed phenotypic differences. On the basis of these results, it can be speculated that the observed interpopulation polymorphism of protein regulation in response to heat stress could underlie their different capacities to withstand and recover from heat stress. These local adaptations are potentially relevant for the species adaptation to the conditions predicted by the current models for climate change.  相似文献   

17.
18.
Embryogenic cell lines of Norway spruce ( Picea abies ) varying in growth habit and morphology were compared as regards profiles of extracellular proteins. Similar proteins were detected in the culture medium by SDS PAGE and in vivo labeling experiments, indicating that the proteins were secreted. Approximately 20 protein bands could be detected in the medium of each cell line. Three of the bands represented glycosylated proteins, as revealed by Concanavalin A staining. Some of the secreted proteins were similar for all tested embryogenic lines of Norway spruce, others were either specific for a group of cell lines or for individual cell lines. A correlation was observed between the morphology of the somatic embryos in a cell line and the presence of secreted proteins. The embryogenic cell lines of Norway spruce can be divided into two main groups. A and B, where A is characterized by somatic embryos with dense embryoheads and B by somatic embryos with loosely aggregated cells in their embryoheads. When proteins secreted from a cell line belonging to group A were added to cell lines belonging to group B, the somatic embryos of the B type developed further and became more similar in morphology to A-type embryos. These observations indicate that cell lines belonging to group A secrete certain proteins to the culture medium that are essential for the development of somatic embryos of Norway spruce.  相似文献   

19.
Summary Fumigation with 100 g/m3 and 200 g/m3 ozone in closed-top fumigation chambers induced starch accumulation in chloroplasts of Norway spruce. This accumulation was probably due to a partial inhibition of the starch translocation at night. The intensity of the effect was dependent on the season and the age of the needles. The accumulation was reversed in winter. It is therefore unlikely that such an effect has much significance for plant health.  相似文献   

20.
Seedlings of Norway spruce were exposed to fungal infection and drought in order to investigate differences in their stress responses on the enzymatic level. Six-week-old seedlings were infected with the root rot fungus Rhizoctonia , or subjected to drought, respectively. Changes at the enzymatic level were more rapid and significantly higher in infected plants in comparison with drought-stressed spruce plants. Rhizoctonia infection resulted in early local and systemic increase in peroxidase and chitinase activity. The most prominent isoforms responding were highly basic peroxidases and chitinases (pI 9–9.5) and several acidic chitinases (pI3–4). An increased intensity of similar peroxidase isoforms was found in drought-affected plants. Two peroxidase isoforms (with pI < 9) accumulated exclusively in response to drought. These results suggest that at an early stage of infection and drought stress, the two stresses can be distinguished by the temporal appearance and isoform profile of peroxidases and chitinases. Changes in enzyme activity appeared before changes in physiological parameters, thus these isoform profiles could be used as early markers of stress conditions in spruce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号