首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By screening of a rat liver cDNA library with complex and deoxyinosine containing oligonucleotide probes a cDNA clone was isolated and shown by sequencing to code for the amino-terminal half of the rat liver 28 kDa gap junction protein. The insert hybridized to a 1.9 kb species from rat and mouse liver poly(A)+ RNA in Northern blot analysis. In embryonic mouse hepatocytes the amount of the 1.9 kb mRNA increased 3-fold between 24 and 96 h in culture. This correlates with the previously described increase of the 28 kDa gap junction protein under these conditions.  相似文献   

2.
Phospholipid methyltransferase, the enzyme that converts phosphatidylethanolamine into phosphatidylcholine with S-adenosyl-L-methionine as the methyl donor, was purified to apparent homogeneity from rat liver microsomal fraction. When analysed by SDS/polyacrylamide-gel electrophoresis only one protein, with molecular mass about 50 kDa, is detected. This protein could be phosphorylated at a single site by incubation with [alpha-32P]ATP and the catalytic subunit of cyclic AMP-dependent protein kinase. A less-purified preparation of the enzyme is mainly composed of two proteins, with molecular masses about 50 kDa and 25 kDa, the 50 kDa form being phosphorylated at the same site as the homogeneous enzyme. After purification of both proteins by electro-elution, the 25 kDa protein forms a dimer and migrates on SDS/polyacrylamide-gel electrophoresis with molecular mass about 50 kDa. Peptide maps of purified 25 kDa and 50 kDa proteins are identical, indicating that both proteins are formed by the same polypeptide chain(s). It is concluded that rat liver phospholipid methyltransferase can exist in two forms, as a monomer of 25 kDa and as a dimer of 50 kDa. The dimer can be phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

3.
The sequence of the amino-terminal 32 residues of the rat heart Mr 28,000 gap junction protein presented here allows, for the first time, a sequence comparison of gap junctional proteins from different tissues (heart and liver). Comparison of the rat heart gap junction protein sequence and that available from rat liver reveals 43% sequence identity and conservative changes at an additional 25% of the positions. Both proteins exhibit a hydrophobic domain which could represent a transmembrane span of the junction. This result unequivocally demonstrates the existence of at least two forms of the gap junction protein. As yet, no homology is evident between the gap junctional proteins of either heart or liver and main intrinsic protein from rat eye lens.  相似文献   

4.
A protein with a molecular mass of 64 kDa (P64) from Leptospira interrogans serovar hardjo was partially purified by using successively, phase partitioning with Triton X-114, ion-exchange chromatography and sucrose gradient centrifugation. Purification to homogeneity was obtained by electroelution of P64 from SDS-polyacrylamide gels. Monospecific rabbit antiserum (R alpha P64) was prepared using the purified protein preparation. P64 had a native molecular mass of greater than 670 kDa and was recognized by R alpha P64 as well as by human antisera. Western blotting of leptospiral serovars and 18 other bacterial species with R alpha P64 showed that P64 was cross-reactive with an equivalent antigen in a wide range of bacteria, indicating that it belongs to a family of antigens previously designated 'common antigen'. This putative common antigen from Leptospira appears to have a sub-surface location, but its function is not yet known.  相似文献   

5.
R P Bhullar  R J Haslam 《FEBS letters》1988,237(1-2):168-172
The 27 kDa platelet membrane protein (Gn27) that binds [alpha-32P]GTP on nitrocellulose blots of SDS-polyacrylamide gels [(1987) Biochem. J. 245, 617-620] was compared with other low molecular mass GTP-binding proteins. Platelet membranes also contained 21 kDa proteins that bound anti-ras p21 antibody and 22-23 kDa proteins that could be ADP-ribosylated by botulinum neurotoxin type D. These groups of proteins were resolved electrophoretically from each other and from Gn27. A low molecular mass GTP-binding protein from bovine brain [(1987) Biochem. J. 246, 431-439] was also resolved from Gn27. At the levels normally present in cell membranes, only Gn-proteins bound significant amounts of [32P]GTP after transfer of protein from SDS-polyacrylamide gels to nitrocellulose.  相似文献   

6.
An extended synthetic oligonucleotide (58-mer) has been used to identify and characterize a human liver gap junction cDNA. The cDNA is 1,574 bases long and contains the entire coding region for a gap junction protein. In vitro translation of the RNA products of this cDNA is consistent with it coding for a 32,022-D protein. Southern blot analysis indicates that the gap junction gene is present as a single copy, and that it can be detected in a variety of organisms using the human liver cDNA as a probe. The human cDNA has been used to screen a rat liver cDNA library, and a rat liver junction cDNA clone has been isolated. The rat liver clone is 1,127 bases in length, and it has strong sequence homology to the human cDNA in the protein-coding region, but less extensive homology in the 3'-untranslated region.  相似文献   

7.
Two cDNA clones for the barley photosystem I polypeptide which migrates with an apparent molecular mass of 9.5 kDa on SDS-polyacrylamide gels have been isolated using antibodies and an oligonucleotide probe. The determined N-terminal amino acid sequence for the mature polypeptide confirms the identification of the clones. The 644 base-pair sequence of one of the clones contains one large open reading frame coding for a 14 882 Da precursor polypeptide. The molecular mass of the mature polypeptide is 10 193 Da. The hydropathy plot of the polypeptide shows one membrane-spanning region with a predicted -helix secondary structure. The gene for the 9.5 kDa polypeptide has been designated PsaH.  相似文献   

8.
A cDNA clone encoding a 10.8 kDa photosystem I polypeptide of barley   总被引:2,自引:0,他引:2  
A cDNA clone encoding the barley photosystem I polypeptide which migrates with an apparent molecular mass of 16 kDa on SDS-polyacrylamide gels has been isolated. The 634 bp sequence of this clone has been determined and contains one large open reading frame coding for a 15,457 Da precursor polypeptide. The molecular mass of the mature polypeptide is 10,821 Da. The amino acid sequence of the transit peptide indicates that the polypeptide is routed towards the stroma side of the thylakoid membrane. The hydropathy plot of the polypeptide shows no membrane-spanning regions.  相似文献   

9.
Coding nucleotide sequence of rat liver malic enzyme mRNA   总被引:6,自引:0,他引:6  
The nucleotide sequence of the mRNA for malic enzyme ((S)-malate NADP+ oxidoreductase (oxaloacetate-decarboxylating, EC 1.1.1.40) from rat liver was determined from three overlapping cDNA clones. Together, these clones contain 2078 nucleotides complementary to rat liver malic enzyme mRNA. The single open reading frame of 1761 nucleotides codes for a 585-amino acid polypeptide with a calculated molecular mass of about 65,460 daltons. The cloned cDNAs contain the complete 3'-noncoding region of 301 nucleotides for the major mRNA species of rat liver and 16 nucleotides of the 5'-noncoding region. Amino acid sequences of seven tryptic peptides (67 amino acids) from the purified protein are distributed through the single open reading frame and show excellent correspondence with the translated nucleotide sequence. The putative NADP-binding site for malic enzyme was identified by amino acid sequence homology with the NADP-binding site of the enoyl reductase domain of fatty acid synthetase.  相似文献   

10.
1. Three proteins have been isolated from chicken (Gallus domesticus) liver that bind antibodies directed against authentic rat sterol carrier protein2 (SCP2) and have similar molecular mass to the three major immunoreactive rat liver proteins (12 kDa, 30-36 kDa, 55-60 kDa). 2. Bile from both chicken and rat contains the high molecular mass immunoreactive species. 3. The chicken 12 kDa SCP2-like protein purifies similarly to rat SCP2 but the homogeneous chicken SCP2-like protein is dissimilar in amino acid composition and N-terminal amino acid sequence. 4. The activity of chicken SCP2-like protein differs from rat SCP2 in that it was consistent with fusion (transfer of both polar surface and non-polar core lipids) rather than transfer of polar lipids only.  相似文献   

11.
In this paper, the isolation of rat liver gap junctions from alkali-extracted rat liver plasma membranes is described. The purification is significantly more rapid than the commonly used detergent-based approaches and is subject to less variability. The gap junctions isolated by this method are comprised of a 27,000-Da polypeptide previously identified as the major gap junction polypeptide. The isolated gap junctions have the characteristic double-membrane organization and subunit structure observed in vivo. The protein yield is from 8 to 10 micrograms/g of liver (wet weight), about a 10-fold increase in recovery over that of earlier isolation procedures. With the availability of increased amounts of material, antibodies were raised to the liver gap junction polypeptide. Immunofluorescence localization of these antibodies on rat liver sections revealed a distribution consistent with that expected from electron microscopic analysis of liver thin sections. Double diffusion of antibody against solubilized gap junctions in detergent-containing gels resulted in the formation of precipitin arcs, suggesting response to multiple determinants. Antibody binding to the 27,000-Da gap junction polypeptide was demonstrated by immunoblot analysis of sodium dodecyl sulfate-polyacrylamide gels containing rat liver plasma membranes and isolated gap junctions. These results confirm the identification of the 27,000-Da polypeptide as the major protein component of gap junctions.  相似文献   

12.
A doublet of immunoreactive bands has been identified in rat liver nuclei, nuclear matrix and lamina by means of a polyclonal antibody against protein kinase C. The two polypeptides show an apparent molecular weight of 77 and 74 kDa on SDS-polyacrylamide gels, and appear to be tightly bound nuclear components, resistant to detergent and high salt extraction. Given the complexity of the genes encoding for protein kinase C, these two forms of the enzyme might be translational products specifically located in the nucleus, involved in the transduction to the genomic apparatus of regulatory signals generated by growth factors and tumor promoters.  相似文献   

13.
《The Journal of cell biology》1987,105(6):2621-2629
Northern blot analysis of rat heart mRNA probed with a cDNA coding for the principal polypeptide of rat liver gap junctions demonstrated a 3.0- kb band. This band was observed only after hybridization and washing using low stringency conditions; high stringency conditions abolished the hybridization. A rat heart cDNA library was screened with the same cDNA probe under the permissive hybridization conditions, and a single positive clone identified and purified. The clone contained a 220-bp insert, which showed 55% homology to the original cDNA probe near the 5' end. The 220-bp cDNA was used to rescreen a heart cDNA library under high stringency conditions, and three additional cDNAs that together spanned 2,768 bp were isolated. This composite cDNA contained a single 1,146-bp open reading frame coding for a predicted polypeptide of 382 amino acids with a molecular mass of 43,036 D. Northern analysis of various rat tissues using this heart cDNA as probe showed hybridization to 3.0-kb bands in RNA isolated from heart, ovary, uterus, kidney, and lens epithelium. Comparisons of the predicted amino acid sequences for the two gap junction proteins isolated from heart and liver showed two regions of high homology (58 and 42%), and other regions of little or no homology. A model is presented which indicates that the conserved sequences correspond to transmembrane and extracellular regions of the junctional molecules, while the nonconserved sequences correspond to cytoplasmic regions. Since it has been shown previously that the original cDNA isolated from liver recognizes mRNAs in stomach, kidney, and brain, and it is shown here that the cDNA isolated from heart recognizes mRNAs in ovary, uterus, lens epithelium, and kidney, a nomenclature is proposed which avoids categorization by organ of origin. In this nomenclature, the homologous proteins in gap junctions would be called connexins, each distinguished by its predicted molecular mass in kilodaltons. The gap junction protein isolated from liver would then be called connexin32; from heart, connexin43.  相似文献   

14.
Immunological properties of gap junction protein from mouse liver   总被引:9,自引:0,他引:9  
Hepatic gap junctions were purified as plaques from BALB/c mice and separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). Antisera were raised in rabbits and rats against gap junction plaques as well as protein bands of the following apparent molecular weights: 44K to 49K ("dimer" proteins), 26K, and 21K. Using an enzyme immunoassay, we found that the reactivities of the different antisera towards gap junction plaques decreased in the following order: anti-plaque antisera, anti-26K antisera, anti-"dimer" protein antisera, and anti-21K antisera. The gap junction protein bands separated by SDS-polyacrylamide gel electrophoresis were transferred by blotting onto nitrocellulose paper and the immunological cross-reactivities were compared: the anti-26K antisera reated with the dimer protein bands and the 26K band but did not cross-react with the 21K protein band. The rabbit anti-21K antiserum reacted weakly with the 21K protein. The missing immunological cross-reaction of the 26K and the 21K protein band can be most easily explained if both proteins were independent of each other. No inhibition of metabolic cooperation between fibroblastoid mouse 3T6 cells was observed in the presence of Fab fragments prepared from rabbit antiplaque antiserum or from rabbit anti 26K antiserum. When the total proteins of plasma membranes from mouse liver were separated by SDS-polyacrylamide electrophoresis, only the 26K protein reacted with rabbit anti 26K antiserum. This result opens the possibility for direct quantitation of gap junction protein in tissues and cell fractions.  相似文献   

15.
Cysteine sulfinate decarboxylase (CSD) is considered as the rate-limiting enzyme in the biosynthesis of taurine, a possible osmoregulator in brain. Through cloning and sequencing of RT-PCR and RACE-PCR products of rat brain mRNAs, a 2,396-bp cDNA sequence was obtained encoding a protein of 493 amino acids (calculated molecular mass, 55.2 kDa). The corresponding fusion protein showed a substrate specificity similar to that of the endogenous enzyme. The sequence of the encoded protein is identical to that encoded by liver CSD cDNA. Among other characterized amino acid decarboxylases, CSD shows the highest homology (54%) with either isoform of glutamic acid decarboxylase (GAD65 and GAD67). A single mRNA band, approximately 2.5 kb, was detected by northern blot in RNA extracts of brain, liver, and kidney. However, brain and liver CSD cDNA sequences differed in the 5' untranslated region. This indicates two forms of CSD mRNA. Analysis of PCR-amplified products of genomic DNA suggests that the brain form results from the use of a 3' alternative internal splicing site within an exon specifically found in liver CSD mRNA. Through selective RT-PCR the brain form was detected in brain only, whereas the liver form was found in liver and kidney. These results indicate a tissue-specific regulation of CSD genomic expression.  相似文献   

16.
《The Journal of cell biology》1989,109(6):3391-3401
While a number of different gap junction proteins have now been identified, hepatic gap junctions are unique in being the first demonstrated case where two homologous, but distinct, proteins (28,000 and 21,000 Mr) are found within a single gap junctional plaque (Nicholson, B. J., R. Dermietzel, D. Teplow, O. Traub, K. Willecke, and J.-P. Revel. 1987. Nature [Lond.]. 329:732-734). The cDNA for the major 28,000-Mr component has been cloned (Paul, D. L. 1986. J. Cell Biol. 103:123-134) (Kumar, N. M., and N. B. Gilula. 1986. J. Cell Biol. 103:767-776) and, based on its deduced formula weight of 32,007, has been designated connexin 32 (or Cx32 as used here). We now report the selection and characterization of clones for the second 21,000-Mr protein using an oligonucleotide derived from the amino-terminal protein sequence. Together the cDNAs represent 2.4 kb of the single 2.5- kb message detected in Northern blots. An open reading frame of 678 bp coding for a protein with a calculated molecular mass of 26,453 D was identified. Overall sequence homology with Cx32 and Cx43 (64 and 51% amino acid identities, respectively) and a similar predicted tertiary structure confirm that this protein forms part of the connexin family and is consequently referred to as Cx26. Consistent with observations on Cx43 (Beyer, E. C., D. L. Paul, and D. A. Goodenough. 1987. J. Cell Biol. 105:2621-2629) the most marked divergence between Cx26 and other members of the family lies in the sequence of the cytoplasmic domains. The Cx26 gene is present as a single copy per haploid genome in rat and, based on Southern blots, appears to contain at least one intron outside the open reading frame. Northern blots indicate that Cx32 and Cx26 are typically coexpressed, messages for both having been identified in liver, kidney, intestine, lung, spleen, stomach, testes, and brain, but not heart and adult skeletal muscle. This raises the interesting prospect of having differential modes of regulating intercellular channels within a given tissue and, at least in the case of liver, a given cell.  相似文献   

17.
Previous work has indicated that the guinea pig sperm membrane protein, PH-20, functions in sperm-egg adhesion and that its surface expression is regulated by the acrosome reaction. The PH-20 protein was purified by monoclonal antibody affinity chromatography. Sixty-seven to one hundred percent of the PH-20 antigenic activity present in an octylglucoside (OG) extract of sperm was recovered in the purified protein. From 10(10) sperm, approximately 0.4 mg of PH-20 protein was obtained, which was about 0.24% of the total protein in the OG extract. The purified protein retained the ability to bind the three anti-PH-20 monoclonal antibodies we have isolated. Silver staining of purified PH-20 on overloaded sodium dodecyl sulfate (SDS) gels allowed the estimate that silver-stainable contaminants were present at a level of one part in 2000. The purified PH-20 protein exists in three forms separable on SDS-polyacrylamide gel electrophoresis: a major form with a molecular mass of 64 kDa, a minor form of 56 kDa, and an endoproteolytically cleaved form composed of two disulfide-linked fragments of 41-48 kDa and 27 kDa. Cleveland digests of the 64 kDa and 56 kDa polypeptides indicated that they were structurally related. A proportion of the 64 kDa polypeptide in each purified preparation had undergone endoproteolysis at a specific site, so that it was cleaved into the two disulfide-linked fragments, 41-48 kDa and 27 kDa. It is speculated that the site-specific endoproteolysis of PH-20 may occur during the acrosome reaction and have biological significance.  相似文献   

18.
We have isolated cDNA clones encoding dihydropyrimidinase (DHPase) from human liver and its three homologues from human fetal brain. The deduced amino acid (aa) sequence of human DHPase showed 90% identity with that of rat DHPase, and the three homologues showed 57–59% aa identity with human DHPase, and 74–77% aa identity with each other. We tentatively termed these homologues human DHPase related protein (DRP)-1, DRP-2 and DRP-3. Human DRP-2 showed 98% aa identity with chicken CRMP-62 (collapsin response mediator protein of relative molecular mass of 62 kDa) which is involved in neuronal growth cone collapse. Human DRP-3 showed 94–100% aa identity with two partial peptide sequences of rat TOAD-64 (turned on after division, 64 kDa) which is specifically expressed in postmitotic neurons. Human DHPase and DRPs showed a lower degree of aa sequence identity with Bacillus stearothermophilus hydantoinase (39–42%) and Caenorhabditis elegans unc-33 (32–34%). Thus we describe a novel gene family which displays differential tissue distribution: i.e., human DHPase, in liver and kidney; human DRP-1, in brain; human DRP-2, ubiquitously expressed except for liver; human DRP-3, mainly in heart and skeletal muscle.  相似文献   

19.
An improved method for purifying the bisphosphoglycerate-independent phosphoglycerate mutase from wheat germ has been devised. The method yields enzyme with a specific activity of 2,300 units/mg in 0.1 M Tris-C1 at pH 8.7 and 30 degrees C. Electrophoresis on electrofocusing and analytical polyacrylamide gels reveals only one protein band (pI = 7.3); however, under denaturing conditions (sodium dodecyl sulfate polyacrylamide gel electrophoresis), two prominent enzyme forms, with molecular masses of 63 and 74 kDa, manifest themselves along with several minor, high molecular mass components (126-141 kDa). Non-denaturing exclusion chromatography shows that both major species are catalytically active, and suggests that each species is capable of participating in reversible monomer/dimer association. Wheat germ mutase is inhibited by time-dependent reactions involving either polydentate chelators or sulfhydryl reagents.  相似文献   

20.
Polyclonal antibodies raised against specific recombinant low molecular mass GTP-binding proteins were tested for their ability to recognize partially purified human platelet membrane Gn-proteins (i.e. proteins that bind [alpha-32P]GTP on nitrocellulose blots of SDS/polyacrylamide gels). An antiserum against simian ralA protein recognized a 27 kDa human platelet protein with the same apparent molecular mass as the major platelet Gn-protein (Gn27). In further analysis by two-dimensional polyacrylamide gel electrophoresis, the isoelectric focusing step permitted resolution of 12 major Gn-protein forms, seven of 27 kDa (Gn27a-g), one of 26 kDa (Gn26) and four of 24 kDa (Gn24a-d). The ralA antibody reacted strongly with the five most basic Gn27 species (a-e), weakly with Gn26 and not at all with Gn27f, Gn27g or Gn24a-d. We conclude that ral gene products account for some but probably not for all of the platelet Gn-proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号