首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silylative coupling of olefins differs from olefin metathesis. Although in both these reactions ruthenium catalysts play a crucial role and ethylene product is detected, ruthenium-carbene intermediate is formed only in the course of the metathesis reaction. In this study quantum chemical calculations based on the density functional theory (DFT) have been carried out in order to examine the mechanism of the silylative coupling of olefins leading to ethylene elimination. In the first step of the catalytic cycle, a hydrogen atom from the ruthenium catalytic center is transferred preferentially to the carbon atom bound to Si in a vinylsilane. This H transfer is coupled with the formation of Ru-C bond. Next, the rotation around the newly formed C-C single bond occurs so that silicon atom is placed in the vicinity of the ruthenium center. The following step involves the migration of a silyl moiety, and leads to Ru-Si bond formation, coupled with ethylene elimination. The next reaction, that is the insertion of ethylene (alkene) into Ru-Si bond, has an activation barrier almost as high as the reaction of ethylene elimination. However, the posibility of removing gaseous ethylene from the reactive mixture together with the entropic fators suggests that the insertion of alkene that is larger than C2H4 is the rate limiting step in the silylative coupling of olefins. It also suggests that the substituents attached to the silicon atom or the carbon atoms of an alkene by electronic and steric effects may significantly affect silyl migration and thus the effectiveness of the catalytic reaction. Figure Insertion of alkene into Ru-Si bond seems to be rate limiting step in the silylative coupling of olefins Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
An efficient and novel synthesis of bis(tert-butyl)- 1-pyrenylmethyl-silyl group (TBMPS) has been reported having fluorescent properties conferred by the pyrenyl group. This silyl group being base labile is efficiently used for one-pot protection of the 5-OH of the nucleosides. While incorporated terminally at the 5-OH of long sequences viz. AA TGG AGC CAG T and GC TAT GTCAGT TCC CCT TGG TTC TC, this group is also helpful in subsequent purification by HPLC as well as PAGE. Besides these, a labeled dimer (T*T) and a labeled tetramer (T*TTT) were also synthesized to compare the fluorescence properties of short and long labeled sequences. Fluorescence properties of these sequences were studied in detail to find the suitability of the approach.  相似文献   

3.
In this study, we synthesized a series of enantiomerically pure (2R,3S)-disubstituted tetrahydropyranes with diverse functional groups using known methodologies. In addition to the tert-butyl dimethyl silyl group, other common protecting groups for hydroxyl groups such as allyl, acetate, and benzoate were used to obtain appropriate derivatives. Pure compounds were evaluated in vitro against HL60 human leukemia cells and MCF7 human breast cancer cells. From the growth inhibition data a structure-activity relationship was obtained. Overall the results point to the relevant role of the tert-butyl dimethyl silyl group in the modulation of cytotoxic activity.  相似文献   

4.
2',3'-Didehydro-2',3'-dideoxy-9-deazaguanosine (1), its monophosphate prodrug (2), and two analogues, 2',3'-dideoxy-9-deazaguanosine (3) and 2',3'-didehydro-2',3'-dideoxy-9-deazainosine (4), have been synthesized from benzoylated 9-deazaguanosine (5). Basic hydrolysis of 5, selective protection of the 2-amino and 5'-hydroxy functions with isobutyryl and silyl groups, respectively, followed by reaction with thiocarbonyldiimidazole gave the cyclic thiocarbonate, which, upon reaction with triethyl phosphite, followed by deprotection, afforded 1. Treatment of 1 with phenyl methoxyalaninylphosphochloridate and N-methylimidazole gave 2. Catalytic hydrogenation of 1 gave 3. Hydrodediazoniation of 1 with tert-butyl nitrite and tris(trimethylsilyl)silane gave 4. Compounds 1-4 were found to be inactive against the human immunodeficiency virus and exhibited minimal to no cytotoxic activity against the L1210 leukemia, CCRF-CEM lymphoblastic leukemia, and B16F10 melanoma in vitro.  相似文献   

5.
Kinetic study of the reaction between vitamin E radical and alkyl hydroperoxides has been performed, as a model for the reactions of lipid hydroperoxides with vitamin E radical in biological systems. The rates of reaction of hydroperoxides (n-butyl hydroperoxide 1, sec-butyl hydroperoxide 2, and tert-butyl hydroperoxide 3) with vitamin E radical (5,7-diisopropyl-tocopheroxyl 4) in benzene solution have been determined spectrophotometrically. The second-order rate constants, k-1, obtained are 1.34 x 10(-1) M-1s-1 for 1, 2.42 x 10(-1) M-1s-1 for 2, and 3.65 x 10(-1) M-1s-1 for 3 at 25.0 degrees C. The result indicates that the rate constants increase as the total electron donating capacity of the alkyl substituents at alpha-carbon atom of hydroperoxides increases. The above rates, k-1, are about seven order of magnitude lower than those, k1, for the reaction of vitamin E with peroxyl radical.  相似文献   

6.
Spin trapping of nitrogen dioxide radical by several nitrones has been studied. The reaction results in the formation of persistent acyl nitroxides, after the oxidation of the intermediate spin adducts having an -ONO group on C-2 atom. The intermediate is effectively detected when DEPMPO is used as the spin trap. The reaction between PBN or 5,7-di-tert-butyl-3,3-dimethyl indoline N-oxide with nitrous acid gives the corresponding acyl nitroxide only when oxygen is present in the reaction milieu.

On the other hand, nitroso spin traps do not trap NO2 confirming that the unpaired electron of nitrogen dioxide is localized on the oxygen atom.  相似文献   

7.
Summary Bioconversion of three organosilicon compounds of different chain length between the silicon atom and the hydroxyl group (Me3Si(CH2)nOH, n = 1–3) by horse liver alcohol dehydrogenase (HLADH, EC 1.1.1.1.) was studied. Furthermore, the effect of the silicon atom on the HLADH-catalysed reaction was examined in comparison with the corresponding carbon compounds. HLADH could catalyse the dehydrogenation of trimethylsilyeethanol (n = 2) and trimethylsilylpropanol (n = 3). Trimethylsilylethanol was a better substrate than both its carbon analogue, 3,3-dimethylbutanol, and ethanol. The improved activity of HLADH on trimethylsilylethanol could be accounted for by a higher affinity toward HLADH and a lower activation energy of the reaction by HLADH than those of the carbon counterpart. These are derived from physical properties of the silicon atom, that is, the lower electronegativity and the bigger radius than those of the carbon atom. In contrast, HLADH showed no activity on trimethylsilylmethanol (n = 1), whereas it catalysed the dehydrogenation of the carbon analogue, 2,2-dimethylpropanol, fairly well. The reason for the inactivity of HLADH in the case of trimethylsilylmethanol based on the electric effect of the silicon atom is also discussed. Offsprint requests to: A. Tanaka  相似文献   

8.
Beta-Selenaproline, a proline analog having the beta-methylene group substituted by a selenium atom, has been tested in ATP-PPi exchange reaction catalyzed by either Escherichia coli or rat liver aminoacyl-tRNA synthetases. It has been shown that with both enzymatic systems beta-selenaproline does not give rise to ATP-PPi exchange, but specifically inhibits proline activation. The inhibition is of fully competitive type and the Ki values, lower than the Km values for proline, show that beta-selenaproline binds to the synthetases with high affinity. The inability to form the complex with AMP, taking into account also the behavior of gamma-selenaproline and other proline analogs, has been ascribed to the presence of the selenium atom in the beta-position.  相似文献   

9.
The biotransformation of compounds containing silicon has recently been a subject of much interest. In this study, a variety of commercially available serine hydrolases were tested for their ability to catalyse the hydrolysis of the silicon–ether bond in a variety of silyl ethers. The hydrolysis of trimethylethoxysilane in buffer was not found to be accelerated by the presence of trypsin, chymotrypsin, or a variety of other lipase and protease enzymes. Cleavage of a range of alternative silyl ether substrates, including a trimethylsilyl (TMS) ether, by these hydrolases was also not observed, but, interestingly, only two of the enzymes tested were able to cleave a t-butyl α,α,α-carboxylate that was approximately isosteric with the TMS-protected substrate. This suggests that the cleavage of Si–O bonds by serine hydrolases, such as the cathepsin homolog silicatein-α, may be in part limited by steric effects, as the reactive centre in the substrate is always, by analogy to C-centred substrates, tertiary, and thus inherently sterically demanding regardless of the putative catalytic competence of the enzymes.  相似文献   

10.
Azetidine-2-carboxylic acid (Aze) analogs possessing various heteroatomic side chains at the 3-position have been synthesized by modification of 1-9-(9-phenylfluorenyl) (PhF)-3-allyl-Aze tert-butyl ester (2S,3S)-1. 3-Allyl-Aze 1 was synthesized by regioselective allylation of alpha-tert-butyl beta-methyl N-(PhF)aspartate 13, followed by selective omega-carboxylate reduction, tosylation, and intramolecular N-alkylation. Removal of the PhF group and olefin reduction by hydrogenation followed by Fmoc protection produced nor-leucine-Aze chimera 2. Regioselective olefin hydroboration of (2S,3S)-1 produced primary alcohol 23, which was protected as a silyl ether, hydrogenated and N-protected to give 1-Fmoc-3-hydroxypropyl-Aze 26. Enantiopure (2S,3S)-3-(3-azidopropyl)-1-Fmoc-azetidine-2-carboxylic acid tert-butyl ester 3 was prepared as a Lys-Aze chimera by activation of 3-hydroxypropyl-Aze 26 as a methanesulfonate and displacement with sodium azide. Moreover, orthogonally protected azetidine dicarboxylic acid 4 was synthesized as an alpha-aminoadipate-Aze chimera by oxidation of alcohol 26. These orthogonally protected amino acid-Aze chimeras are designed to serve as tools for studying the influence of conformation on peptide activity.  相似文献   

11.
The formation of radical species during the reaction of ter-tbutyl hydroperoxide and hypochlorous acid has been investigated by spin trapping and chemiluminescence. A superposition of two signals appeared incubating tert-butyl hydroperoxide with hypochlorous acid in the presence of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN). The first signal (aN = 1.537 mT, aH beta = 0.148 mT) was an oxidation product of POBN caused by the action of hypochlorous acid. The second spin adduct (aN = 1.484 mT, aH beta = 0.233 mT) was derived from a radical species that was formed in the result of reaction of tert-butyl hydroperoxide with hypochlorous acid. Similarly, a superposition of two signals was also obtained using the spin trap N-tert-butyl-alpha-phenylnitrone (PBN). tert-Butyl hydroperoxide was also treated with Fe2+ or Ce4+ in the presence of POBN. Using Fe2+ a spin adduct with a N = 1.633 mT and aH beta = 0.276 mT was observed. The major spin adduct formed with Ce4+ was characterised by a N = 1.480 mT and aH beta = 0.233 mT. The reaction of tert-butyl hydroperoxide with hypochlorous acid was accompanied by a light emission, that time profile and intensity were identical to those emission using Ce4+. The addition of Fe2+ to tert-butyl hydroperoxide yielded a much smaller chemiluminescence. Thus, tert-butyl hydroperoxide yielded in its reaction with hypochlorous acid or Ce4+ the same spin adduct and the same luminescence profile. Because Ce4+ is known to oxidize organic hydroperoxides to peroxyl radical species, it can be concluded that a similar reaction takes place in the case of hypochlorous acid.  相似文献   

12.
Gas chromatographic characterizations of fatty alcohols are generally carried out as the free alcohols, trimethyl silyl or acetyl derivatives. In this study, transesterification/acetylation of long chain fatty alcohols is simply carried out by dissolving the alcohol in ethyl/methyl acetate and passing through a micro-column packed with solid NaOH. Reaction times are slightly different for alcohols of different chain length. Rice bran alcohols of 24–34 carbon atom are successfully acetylated. Also, castor oil methyl ester can be interesterified but with longer reaction time.  相似文献   

13.
Ionic liquid mediated deprotection of tert-butyldimethyl silyl (TBDMS) ethers derived from various primary and secondary alcohols have been studied and the reaction conditions optimized. Deprotection of the silyl ethers in FeCl3 based ionic liquids in presence of acetic anhydride yielded the acetate esters of the corresponding alcohols in good yields. The transprotection methodology was extended to the silyl ethers of nucleosides to yield the corresponding acetylated products.  相似文献   

14.
底物中的硅原子对酶反应的影响   总被引:2,自引:0,他引:2  
在酶工程学的研究史上,人们一方面不断地研制开发新的酶种;一方面利用固定化、酶分子改造和修饰等技术来提高酶的活性和稳定性;另一方面,则不断地开拓酶的新用途。酶催化非天然化合物的生物合成和转化(正是这一方面研究的新进展)。由于有机硅化合物在有机合成,尤其...  相似文献   

15.
Ionic liquid mediated deprotection of tert-butyldimethyl silyl (TBDMS) ethers derived from various primary and secondary alcohols have been studied and the reaction conditions optimized. Deprotection of the silyl ethers in FeCl3 based ionic liquids in presence of acetic anhydride yielded the acetate esters of the corresponding alcohols in good yields. The transprotection methodology was extended to the silyl ethers of nucleosides to yield the corresponding acetylated products.  相似文献   

16.
The mechanism of prostaglandin synthase-dependent N-dealkylation has been investigated using an enzyme preparation derived from ram seminal vesicles. Incubation of an N-alkyl substrate, aminopyrine, with enzyme and arachidonic acid, 15-hydroperoxyarachidonic acid, or tert-butyl hydroperoxide resulted in the formation of the transient aminopyrine free radical species. Formation of this radical species, which was detected by electron paramagnetic resonance spectroscopy and/or absorbance at 580 nm, was maximal approximately 30 s following initiation of the reaction and declined thereafter. Free radical formation corresponded closely with formaldehyde formation in this system, in terms of dependence upon substrate and cofactor concentration, as well as in terms of time course. Both aminopyrine free radical and formaldehyde formation were inhibited by indomethacin and flufenamic acid, inhibitors of prostaglandin synthase. The results suggest that the aminopyrine free radical is an intermediate in the prostaglandin synthase-dependent aminopyrine N-demethylase pathway. The aminopyrine free radical electron paramagnetic resonance spectrum revealed that this species is a one-electron oxidized cation radical of the parent compound. A reaction mechanism has been proposed in which aminopyrine undergoes two sequential one-electron oxidations to an iminium cation, which is then hydrolyzed to the demethylated amine and formaldehyde. Accordingly, the oxygen atom of the aldehyde product is derived from neither molecular nor hydroperoxide oxygen, but from water.  相似文献   

17.
The photosensitized oxygenation of diphenyl (1), di-tert-butyl (2) and phenyl tert-butyl sulfide (3) was studied. Bimolecular rate constants of singlet oxygen quenching are low (1 to 5 x 10(4) M(-1)s(-1)) since the sulfides are poor nucleophiles due to sterical hindrance (2, 3) or the HOMO on the sulfur atom being a less accessible p(z) orbital (1). The quenching is mainly physical, but chemical reaction leading to sulfoxides also takes place in methanol and, to a lower degree, in acetonitrile. Catalysis by carboxylic acids considerably enhances the rate of sulfoxidation. Inefficiency in the chemical reaction is again due to the poor nucleophilicity of the sulfides, which limits oxygen transfer by electrophilic intermediates such as the protonated persulfoxide.  相似文献   

18.
The N-terminal pentapeptide of the lipoprotein from the outer membrane of Escherichia coli was obtained by coupling S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-N-palmitoyl-(R)-cysteine to O-tert-butylseryl-O-tert-butyl-seryl-asparaginyl-alanine tert-butyl ester followed by deprotection with trifluoroacetic acid. The tetrapeptide was built up from alanine tert-butyl ester with N-9-fluorenylmethyloxycarbonyl protected amino acids. S-[2,3-Bis(palmitoyloxy)propyl]-N-palmitoylcysteine was obtained from N,N'-dipalmitoylcystine di-tert-butyl ester via reduction to the thiol, and S-alkylation with racemic 3-bromo-1,2-propanediol followed by esterification with palmitic acid in the presence of dicyclohexylcarbodiimide/dimethylaminopyridine and deprotection with trifluoroacetic acid. The compounds were characterized unequivocally by 13C-NMR and mass spectra. The diastereomers of S-[2,3-bis(palmitoyloxy)propyl]-N-palmitoylcysteine tert-butyl ester with opposite configuration at the propyl-C-2 atom could be separated on a silica-gel column.  相似文献   

19.
The interation of imipramine with human polymorphonuclear leukocytes (PMNs) results in a chemiluminescence (CL) response which has been attributed to the electronic excitation of the imipramine molecule resulting from a reaction of the drug with reactive oxygen species. In order to determine what portion of the tricyclic molecule is involved in this reaction, the interaction of other tricyclics with PMNs was monitored by chemiluminescence. It was observed that tricyclic antidepressants having a carbon atom at position 5 of the ring moiety (amitriptyline, for example) did not yield CL with either resting or zymosan-activated PMNs. In fact this group of compounds inhibited the zymosan-induced CL response. However, CL was observed, with both resting and metabolically-activated PMNs, from several tricyclics having a heterocyclic nitrogen at position 5. These included imipramine, desipramine, opipramol and iprindole. Chlorimipramine, which has a chlorine atom at position 3 of the ring system, failed to yield CL with resting or stimulated cells. Similarly, imipramine N-oxide failed to yield CL with resting cells, but enhanced CL was observed with zymosan-activated PMNs. On the basis of these observations it appears that some aspect of the ring moiety, other than just a heterocyclic nitrogen, facilitates a reaction between these molecules and reactive oxygen which culminates in the generation of CL.  相似文献   

20.

Background  

Remediation of tert-butyl alcohol (TBA) in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-butyl formate (TBF). The effect of temperature on TBA biodegradation has not been not been published in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号