首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
C. Liu  A. J. Lustig 《Genetics》1996,143(1):81-93
We have identified three SIR3 suppressors of the telomeric silencing defects conferred by missense mutations within the Rap1p C-terminal tail domain (aa 800-827). Each SIR3 suppressor was also capable of suppressing a rap1 allele (rap1-21), which deletes the 28 aa C-terminal tail domain, but none of the suppressors restored telomeric silencing to a 165 amino acid truncation allele. These data suggest a Rap1p site for Sir3p association between the two truncation points (aa 664-799). In SIR3 suppressor strains lacking the Rap1p C-terminal tail domain, the presence of a second intragenic mutation within the rap1s domain (aa 727-747), enhanced silencing 30-300-fold. These data suggest a competition between Sir3p and factors that interfere with silencing for association in the rap1(s) domain. rap1-21 strains containing both wild-type Sir3p and either of the Sir3 suppressor proteins displayed a 400-4000-fold increase in telomeric silencing over rap1-21 strains carrying either Sir3p suppressor in the absence of wild-type Sir3p. We propose that this telomere-specific synergism is mediated in part through stabilization of Rap1p/Sir3p telomeric complexes by Sir3p-Sir3p interactions.  相似文献   

3.
目的:黄瓜花叶病毒 (Cucumber mosaic virus,CMV) 编码的2b蛋白具有RNA沉默抑制子的功能,其C末端氨基酸序列非常保守。为了明确2b蛋白C末端保守序列在RNA沉默抑制中的作用,构建了CMV Q株系野生型2b及其C末端缺失突变体2bdelC的植物瞬时表达载体。通过农杆菌共渗滤法对野生型2b及其C末端突变体的沉默抑制子活性进行了分析。结果与结论:烟草接种叶片中野生型2b及其C末端突变体的Western blot检测表明,野生型2b蛋白与其C末端突变体在植物中积累水平变化不大,说明2b蛋白C末端氨基酸残基在维持2b蛋白在植物细胞中的稳定性方面无作用。在整株、细胞和分子水平上分别比较了野生型2b及其突变体2bdelC对共表达GFP的表达量影响,结果表明在所有的测定结果中二者均无明显地差异,说明2b蛋白C末端94-111位氨基酸在抑制局部RNA沉默上无生物学活性,讨论推测C末端应不存在与小RNA结合的结构域。  相似文献   

4.
RNA silencing in transgenic and virus-infected plants involves a mobile silencing signal that can move cell-to-cell and systemically through the plant. It is thought that this signal can influence long-distance movement of viruses because protein suppressors of silencing encoded in viral genomes are required for long-distance virus movement. However, until now, it was not known whether the mobile signal could also influence short-range virus movement between cells. Here, through random mutation analysis of the Potato Potexvirus X (PVX) silencing suppressor P25, we provide evidence that it does. All mutants that were defective for silencing suppression were also non-functional in viral cell-to-cell movement. However, we identified mutant P25 proteins that were functional as silencing suppressors but not as movement proteins and we conclude that suppression of silencing is not sufficient to allow virus movement between cells: there must be a second P25 function that is independent of silencing but also required for cell-to-cell movement. Consistent with this hypothesis, we identified two classes of suppressor-inactive P25 mutants. One class of these mutants is proposed to be functional for the accessory function because their failure to support PVX movement could be complemented by heterologous suppressors of silencing. The second class of P25 mutants is considered defective for both the suppressor and second functions because the heterologous silencing suppressors did not restore virus movement. It is possible, based on analyses of short interfering RNA accumulation, that P25 suppresses silencing by interfering with either assembly or function of the effector complexes of RNA silencing.  相似文献   

5.
6.
黄瓜花叶病毒 (Cucumber mosaic virus,CMV) 编码的2b蛋白具有RNA沉默抑制子功能,为了研究翻译后修饰对2b功能的影响,利用反向PCR定点突变方法对CMV-Q株系2b蛋白的1个预测的磷酸化位点 (S40) 和2个预测的泛素化/SUMO化位点 (K22,K39) 进行了点突变,同时将点突变体插入植物表达载体。通过农杆菌共注射法对3个2b突变体的抑制子活性进行了分析,结果证明,当S40突变为A (2bS40A) 后,2b抑制局部和系统沉默的活性均大幅降低;当K22突变为R (2bK2  相似文献   

7.
Short interfering RNA (siRNA)-mediated RNA silencing plays an important role in cellular defence against viral infection and abnormal gene expression in multiple organisms. Many viruses have evolved silencing suppressors for counter-defence. We have developed an RNA silencing system in the protoplasts of Nicotiana benthamiana to investigate the functions of viral suppressors at the cellular level. We showed that RNA silencing against a green fluorescent protein (GFP) reporter gene in the protoplasts could be induced rapidly and specifically by co-transfection with the reporter gene and various silencing inducers [i.e. siRNA, double-stranded RNA (dsRNA) or plasmid encoding dsRNA]. Using this system, we uncovered novel roles of some viral suppressors. Notably, the Cucumber mosaic virus 2b protein, shown previously to function predominantly by preventing the long-distance transmission of systemic silencing signals, was a very strong silencing suppressor in the protoplasts. Some suppressors thought to interfere with upstream steps of siRNA production appeared to also act downstream. Therefore, a viral suppressor can affect multiple steps of the RNA silencing pathway. Our analyses suggest that protoplast-based transient RNA silencing is a useful experimental system to investigate the functions of viral suppressors and further dissect the mechanistic details of the RNA silencing pathway in single cells.  相似文献   

8.
We found that Sweet potato feathery mottle virus (SPFMV) P1, a close homologue of Sweet potato mild mottle virus P1, did not have any silencing suppressor activity. Remodeling the Argonaute (AGO) binding domain of SPFMV P1 by the introduction of two additional WG/GW motifs converted it to a silencing suppressor with AGO binding capacity. To our knowledge, this is the first instance of the transformation of a viral protein of unknown function to a functional silencing suppressor.  相似文献   

9.
Small RNA-mediated RNA silencing is a widespread antiviral mechanism in plants and other organisms. Many viruses encode suppressors of RNA silencing for counter-defense. The p126 protein encoded by Tobacco mosaic virus (TMV) has been reported to be a suppressor of RNA silencing but the mechanism of its function remains unclear. This protein is unique among the known plant viral silencing suppressors because of its large size and multiple domains. Here, we report that the methyltransferase, helicase, and nonconserved region II (NONII) of p126 each has silencing-suppressor function. The silencing-suppression activities of methyltransferase and helicase can be uncoupled from their enzyme activities. Specific amino acids in NONII previously shown to be crucial for viral accumulation and symptom development are also crucial for silencing suppression. These results suggest that some viral proteins have evolved to possess modular structural domains that can independently interfere with host silencing, and that this may be an effective mechanism of increasing the robustness of a virus.  相似文献   

10.
Satellite RNAs (satRNAs) depend on cognate helper viruses for replication, encapsidation, movement and transmission. Many satRNAs with different symptom modulation effects have been reported. The pathogenicity of satRNAs is thought to be the result of a direct interaction among the satRNA, helper viruses and host factors by unknown mechanisms. To understand the effect of satRNA of Cucumber mosaic virus (a severe field ShanDong strain, SD-CMV) on pathogenicity, and the possible involvement of host RNA silencing pathways in pathogenicity, we constructed biologically active CMV cDNA clones and a CMV-Δ2b mutant lacking the open reading frame of 2b, a silencing suppressor protein, in order to infect Nicotiana benthamiana and Arabidopsis with or without SD-satRNA. We found that SD-satRNA reduced the accumulation of the 2b protein and its coding RNA4A and attenuated the yellowing caused by SD-CMV infection. Small RNA analysis indicated that the 2b protein interfered with RNA silencing, specifically in the synthesis of CMV RNA3-derived small interfering RNAs (R3-siRNAs). The accumulation of R3-siRNAs in CMV-Δ2b infection was reduced in the presence of satRNA, for which greater accumulation of satRNA-derived siRNAs (satsiRNAs) was detected. Our results suggest that abundant SD-satRNA serving as target for RNA silencing may play a role in protecting helper CMV RNA, especially, subgenomic RNA4, from being targeted by RNA silencing. This compensates for the increase in RNA silencing resulting from the reduction in expression of the 2b suppressor in the presence of satRNA. Our data provide evidence that a plant silencing mechanism is involved in the pathogenicity of satRNA.  相似文献   

11.
12.
The NSs protein of Watermelon silver mottle virus (WSMoV) is the RNA silencing suppressor and pathogenicity determinant. In this study, serial deletion and point-mutation mutagenesis of conserved regions (CR) of NSs protein were performed, and the silencing suppression function was analyzed through agroinfiltration in Nicotiana benthamiana plants. We found two amino acid (aa) residues, H113 and Y398, are novel functional residues for RNA silencing suppression. Our further analyses demonstrated that H113 at the common epitope (CE) (109KFTMHNQ117), which is highly conserved in Asia type tospoviruses, and the benzene ring of Y398 at the C-terminal β-sheet motif (397IYFL400) affect NSs mRNA stability and protein stability, respectively, and are thus critical for NSs RNA silencing suppression. Additionally, protein expression of other six deleted (ΔCR1-ΔCR6) and five point-mutated (Y15A, Y27A, G180A, R181A and R212A) mutants were hampered and their silencing suppression ability was abolished. The accumulation of the mutant mRNAs and proteins, except Y398A, could be rescued or enhanced by co-infiltration with potyviral suppressor HC-Pro. When assayed with the attenuated Zucchini yellow mosaic virus vector in squash plants, the recombinants carrying individual seven point-mutated NSs proteins displayed symptoms much milder than the recombinant carrying the wild type NSs protein, suggesting that these aa residues also affect viral pathogenicity by suppressing the host silencing mechanism.  相似文献   

13.
Diaz-Pendon JA  Li F  Li WX  Ding SW 《The Plant cell》2007,19(6):2053-2063
We investigated the genetic pathway in Arabidopsis thaliana targeted during infection by cucumber mosaic virus (CMV) 2b protein, known to suppress non-cell-autonomous transgene silencing and salicylic acid (SA)-mediated virus resistance. We show that 2b expressed from the CMV genome drastically reduced the accumulation of 21-, 22-, and 24-nucleotide classes of viral small interfering RNAs (siRNAs) produced by Dicer-like4 (DCL4), DCL2, and DCL3, respectively. The defect of a CMV 2b-deletion mutant (CMV-Delta2b) in plant infection was efficiently rescued in Arabidopsis mutants producing neither 21- nor 22-nucleotide viral siRNAs. Since genetic analysis further identifies a unique antiviral role for DCL3 upstream of DCL4, our data indicate that inhibition of the accumulation of distinct viral siRNAs plays a key role in 2b suppression of antiviral silencing. Strikingly, disease symptoms caused by CMV-Delta2b in Arabidopsis mutants defective in antiviral silencing were as severe as those caused by CMV, demonstrating an indirect role for the silencing suppressor activity in virus virulence. We found that production of CMV siRNAs without 2b interference depended largely on RNA-dependent RNA polymerase 1 (RDR1) inducible by SA. Given the known role of RDR6-dependent transgene siRNAs in non-cell-autonomous silencing, our results suggest a model in which 2b inhibits the production of RDR1-dependent viral siRNAs that confer SA-dependent virus resistance by directing non-cell-autonomous antiviral silencing.  相似文献   

14.
15.
Craven RJ  Petes TD 《Genetics》2001,158(1):145-154
Mec1p is a cell cycle checkpoint protein related to the ATM protein kinase family. Certain mec1 mutations or overexpression of Mec1p lead to shortened telomeres and loss of telomeric silencing. We conducted a multicopy suppressor screen for genes that suppress the loss of silencing in strains overexpressing Mec1p. We identified SCS2 (suppressor of choline sensitivity), a gene previously isolated as a suppressor of defects in inositol synthesis. Deletion of SCS2 resulted in decreased telomeric silencing, and the scs2 mutation increased the rate of cellular senescence observed for mec1-21 tel1 double mutant cells. Genetic analysis revealed that Scs2p probably acts through a different telomeric silencing pathway from that affected by Mec1p.  相似文献   

16.
F Yan  Y Lu  L Lin  H Zheng  J Chen 《PloS one》2012,7(8):e43242
The p25 triple gene block protein of Potato virus X (PVX) is multifunctional, participating in viral movement and acting as a suppressor of RNA silencing. The cell-to-cell movement of PVX is known to depend on the suppression function of p25. GFP-fused p25 accumulates in rod-like (RL) structures with intense fluorescence in cells. By monitoring the location of fluorescence at different times, we have now shown that the RL structure is composed of filaments. P25 mutants without the conditional ability to recover movement function could not form RL structures while the mutants that had the ability did form the structure, suggesting that the ability of p25 to form RL structures is necessary for its function in cell-to-cell movement, but not for its suppressor function. Moreover, chemical inhibition of microfilaments in cells destroyed the formation of the complete RL structure. Additionally, TGBp2 and TGBp3 were recruited into the RL structure, suggesting a relationship between the TGBps in virus movement.  相似文献   

17.
18.
Plants use RNA silencing mechanisms and produce short-interfering RNA (siRNA) molecules in a defense response against viral infection. To counter this defense response, viruses produce suppressor proteins, which can block the host silencing pathway or interfere with its function in plant cells. The targets for many viral suppressors and the mechanisms by which they function in plant cells are still largely unknown. Recent reports describe that the 2b suppressor of the Cucumber mosaic virus binds ARGONAUTE and that the P0 suppressor of Polerovirus targets ARGONAUTE to degradation. Another report has revealed that the V2 suppressor of tomato yellow mosaic virus binds the coiled-coil protein suppressor of the gene-silencing SGS3 homolog. These reports provide novel insight into the mechanisms developed by viruses to disable the defense system of the plant.  相似文献   

19.
20.
We studied human papillomavirus (HPV) minor nucleocapsid protein (L2) by epitope scanning. Conserved antigenic epitopes identified by rabbit antiserum to bovine papillomavirus (BPV) were revealed in HPV-6b (amino acids, aa, 196-205); HPV-16 (aa:s 376-85) and HPV-18 (aa:s 221-230). L2 proteins. The first two epitopes were situated in hydrophilic regions of the proteins. Aligning the aa-sequences that corresponded to the epitopes with the total L2 sequences of BPV and HPV1a revealed consensus motifs between BPV, HPV1a and the reactive HPV type. In the non-reactive types amino acid alterations were noted. Mismatch between HPV1a sequences and the corresponding HPV-6b and HPV-16, HPV-6b and HPV-18, and HPV-16 and HPV-18 sequences suggests that the alterations may have evolved to facilitate immune surveillance of the genital HPV types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号