首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeTo investigate the dosimetric impact between the anisotropic analytical algorithm (AAA) and the Acuros XB (AXB) algorithm in volumetric-modulated arc therapy (VMAT) plans for high-grade glioma (HGG).MethodsWe used a heterogeneous phantom to quantify the agreement between the measured and calculated doses from the AAA and from the AXB. We then analyzed 14 patients with HGG treated by VMAT, using the AAA. We newly created AXB plans for each corresponding AAA plan under the following conditions: (1) re-calculation for the same number of monitor units with an identical beam and leaf setup, and (2) re-optimization under the same conditions of dose constraints. The dose coverage for the planning target volume (PTV) was evaluated by dividing the coverage into the skull, air, and soft-tissue regions.ResultsCompared to the results obtained with the AAA, the AXB results were in good agreement with the measured profiles. The dose differences in the PTV between the AAA and re-calculated AXB plans were large in the skull region contained in the target. The dose difference in the PTV in both types of plan was significantly correlated with the volume of the skull contained in the target (r = 0.71, p = 0.0042). A re-optimized AXB plan's dose difference was lower vs. the re-calculated AXB plan's.ConclusionsWe observed dose differences between the AAA and AXB plans, in particular in the cases in which the skull region of the target was large. Considering the phantom measurement results, the AXB algorithm should be used in VMAT plans for HGG.  相似文献   

2.
BackgroundThis study aimed to verify the dosimetric impact of Acuros XB (AXB) (AXB, Varian Medical Systems Palo Alto CA, USA), a two model-based algorithm, in comparison with Anisotropic Analytical Algorithm (AAA ) calculations for prostate, head and neck and lung cancer treatment by volumetric modulated arc therapy (VMAT ), without primary modification to AA. At present, the well-known and validated AA algorithm is clinically used in our department for VMAT treatments of different pathologies. AXB could replace it without extra measurements. The treatment result and accuracy of the dose delivered depend on the dose calculation algorithm.Materials and methodNinety-five complex VMAT plans for different pathologies were generated using the Eclipse version 15.0.4 treatment planning system (TPS). The dose distributions were calculated using AA and AXB (dose-to-water, AXBw and dose-to-medium, AXBm), with the same plan parameters for all VMAT plans. The dosimetric parameters were calculated for each planning target volume (PTV) and involved organs at risk (OA R). The patient specific quality assurance of all VMAT plans has been verified by Octavius®-4D phantom for different algorithms.ResultsThe relative differences among AA, AXBw and AXBm, with respect to prostate, head and neck were less than 1% for PTV D95%. However, PTV D95% calculated by AA tended to be overestimated, with a relative dose difference of 3.23% in the case of lung treatment. The absolute mean values of the relative differences were 1.1 ± 1.2% and 2.0 ± 1.2%, when comparing between AXBw and AA, AXBm and AA, respectively. The gamma pass rate was observed to exceed 97.4% and 99.4% for the measured and calculated doses in most cases of the volumetric 3D analysis for AA and AXBm, respectively.ConclusionThis study suggests that the dose calculated to medium using AXBm algorithm is better than AAA and it could be used clinically. Switching the dose calculation algorithm from AA to AXB does not require extra measurements.  相似文献   

3.

Aim

To identifying depth dose differences between the two versions of the algorithms using AIP CT of a 4D dataset.

Background

Motion due to respiration may challenge dose prediction of dose calculation algorithms during treatment planning.

Materials and methods

The two versions of depth dose calculation algorithms, namely, Anisotropic Analytical Algorithm (AAA) version 10.0 (AAAv10.0), AAA version 13.6 (AAAv13.6) and Acuros XB dose calculation (AXB) algorithm version 10.0 (AXBv10.0), AXB version 13.6 (AXBv13.6), were compared against a full MC simulated 6X photon beam using QUASAR respiratory motion phantom with a moving chest wall. To simulate the moving chest wall, a 4 cm thick wax mould was attached to the lung insert of the phantom. Depth doses along the central axis were compared in the anterior and lateral beam direction for field sizes 2 × 2 cm2, 4 × 4 cm2 and 10 × 10 cm2.

Results

For the lateral beam direction, the moving chest wall highlighted differences of up to 105% for AAAv10.0 and 40% for AXBv10.0 from MC calculations in the surface and buildup doses. AAAv13.6 and AXBv13.6 agrees with MC predictions to within 10% at similar depth. For anterior beam doses, dose differences predicted for both versions of AAA and AXB algorithm were within 7% and results were consistent with static heterogeneous studies.

Conclusions

The presence of the moving chest wall was capable of identifying depth dose differences between the two versions of the algorithms. These differences could not be identified in the static chest wall as shown in the anterior beam depth dose calculations.  相似文献   

4.
PurposeThe aim of the present investigation was to evaluate the dosimetric variation regarding the analytical anisotropic algorithm (AAA) relative to other algorithms in lung stereotactic body radiation therapy (SBRT). We conducted a multi-institutional study involving six institutions using a secondary check program and compared the AAA to the Acuros XB (AXB) in two institutions.MethodsAll lung SBRT plans (128 patients) were generated using the AAA, pencil beam convolution with the Batho (PBC-B) and adaptive convolve (AC). All institutions used the same secondary check program (simple MU analysis [SMU]) implemented by a Clarkson-based dose calculation algorithm. Measurement was performed in a heterogeneous phantom to compare doses using the three different algorithms and the SMU for the measurements. A retrospective analysis was performed to compute the confidence limit (CL; mean ± 2SD) for the dose deviation between the AAA, PBC, AC and SMU. The variations between the AAA and AXB were evaluated in two institutions, then the CL was acquired.ResultsIn comparing the measurements, the AAA showed the largest systematic dose error (3%). In calculation comparisons, the CLs of the dose deviation were 8.7 ± 9.9% (AAA), 4.2 ± 3.9% (PBC-B) and 5.7 ± 4.9% (AC). The CLs of the dose deviation between the AXB and the AAA were 1.8 ± 1.5% and −0.1 ± 4.4%, respectively, in the two institutions.ConclusionsThe CL of the AAA showed much larger variation than the other algorithms. Relative to the AXB, larger systematic and random deviations still appeared. Thus, care should be taken in the use of AAA for lung SBRT.  相似文献   

5.
AimThe purpose of this study was to investigate the dosimetric characteristics of three stereotactic ablative body radiotherapy (SABR) techniques using the anisotropic analytical algorithm (AAA) and Acuros XB algorithm. The SABR techniques include coplanar volumetric modulated arc therapy (C-VMAT), non-coplanar intensity modulated radiation therapy (NC-IMRT) and non-coplanar three-dimensional conformal radiotherapy (NC-3D CRT).BackgroundSABR is a special type of radiotherapy where a high dose of radiation is delivered over a short time. The treatment outcome and accuracy of the dose delivered to cancer patients highly depend on the dose calculation algorithm and treatment technique.Materials and methodsTwelve lung cancer patients underwent 4D CT scanning, and three different treatment plans were generated: C-VMAT, NC-IMRT, NC-3D CRT. Dose calculation was performed using the AAA and Acuros XB algorithm. The dosimetric indices, such as conformity index (CI), homogeneity index, dose fall-off index, doses received by organs at risk and planning target volume, were used to compare the plans. The accuracy of AAA and Acuros XB (AXB) algorithms for the lung was validated against measured dose on a CIRS thorax phantom.ResultsThe CIs for C-VMAT, NC-IMRT and NC-3D CRT were 1.21, 1.28 and 1.38 for the AAA, respectively, and 1.17, 1.26 and 1.36 for the Acuros XB algorithm, respectively. The overall dose computed by AcurosXB algorithm was close to the measured dose when compared to the AAA algorithm. The overall dose computed by the AcurosXB algorithm was close to the measured dose when compared to the AAA algorithm.ConclusionThis study showed that the treatment planning results obtained using the Acuros XB algorithm was better than those using the AAA algorithm in SABR lung radiotherapy.  相似文献   

6.
AimTo investigate the impact of Acuros XB (AXB) algorithm in the deep-inspiration breath-hold (DIBH) technique used for treatment of left sided breast cancer.BackgroundAXB may estimate better lung toxicities and treatment outcome in DIBH.Materials and MethodsTreatment plans were computed using the field-in-field technique for a 6 MV beam in two respiratory phases - free breathing (FB) and DIBH. The AXB-calculations were performed under identical beam setup and the same numbers of monitor units as used for AAA-calculation.ResultsMean Hounsfield units (HU), mass density (g/cc) and relative electron density were -782.1 ± 24.8 and -883.5 ± 24.9; 0.196 ± 0.025 and 0.083 ± 0.032; 0.218 ± 0.025 and 0.117 ± 0.025 for the lung in the FB and DIBH respiratory phase, respectively. For a similar target coverage (p > 0.05) in the DIBH respiratory phase between the AXB and AAA algorithm, there was a slight increase in organ at risk (OAR) dose for AXB in comparison to AAA, except for mean dose to the ipsilateral lung. AAA predicts higher mean dose to the ipsilateral lung and lesser V20Gy for the ipsilateral and common lung in comparison to AXB. The differences in mean dose to the ipsilateral lung were 0.87 ± 2.66 % (p > 0.05) in FB, and 1.01 ± 1.07% (p < 0.05) in DIBH, in V20Gy the differences were 1.76 ± 0.83% and 1.71 ± 0.82% in FB (p < 0.05), 3.34 ± 1.15 % and 3.24 ± 1.17 % in DIBH (p < 0.05), for the ipsilateral and common lung, respectively.ConclusionFor a similar target volume coverage, there were important differences between the AXB and AAA algorithm for low-density inhomogeneity medium present in the DIBH respiratory phase for left sided breast cancer patients. DIBH treatment in conjunction with AXB may result in better estimation of lung toxicities and treatment outcome.  相似文献   

7.
PurposeTo evaluate the feasibility of the use of iterative cone-beam computed tomography (CBCT) for dose calculation in the head and neck region.MethodsThis study includes phantom and clinical studies. All acquired CBCT images were reconstructed with Feldkamp–Davis–Kress algorithm-based CBCT (FDK-CBCT) and iterative CBCT (iCBCT) algorithm. The Hounsfield unit (HU) consistency between the head and body phantoms was determined in both reconstruction techniques. Volumetric modulated arc therapy (VMAT) plans were generated for 16 head and neck patients on a planning CT scan, and the doses were recalculated on FDK-CBCT and iCBCT with Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB). As a comparison of the accuracy of dose calculations, the absolute dosimetric difference and 1%/1 mm gamma passing rate analysis were analyzed.ResultsThe difference in the mean HU values between the head and body phantoms was larger for FDK-CBCT (max value: 449.1 HU) than iCBCT (260.0 HU). The median dosimetric difference from the planning CT were <1.0% for both FDK-CBCT and iCBCT but smaller differences were found with iCBCT (planning target volume D50%: 0.38% (0.15–0.59%) for FDK-CBCT, 0.28% (0.13–0.49%) for iCBCT, AAA; 0.14% (0.04–0.19%) for FDK-CBCT, 0.07% (0.02–0.20%) for iCBCT). The mean gamma passing rate was significantly better in iCBCT than FDK-CBCT (AAA: 98.7% for FDK-CBCT, 99.4% for iCBCT; AXB: 96.8% for FDK_CBCT, 97.5% for iCBCT).ConclusionThe iCBCT-based dose calculation in VMAT for head and neck cancer was accurate compared to FDK-CBCT.  相似文献   

8.
PurposeTriple channel algorithm and specific procedures make more reliable radiochromic dosimetry for treatment planning verification and quality assurance in radiation therapy. A tool to obtain radiochromic dose distributions and compare them with the ones resulting from a treatment planning system was developed and applied.MethodsThe tool was developed as Microsoft Excel macro; it builds dose calibration curves against net optical density of Gafchromic EBT3 film, produces axial, coronal and sagittal dose maps and allows to evaluate them against dose distributions calculated by the Varian treatment planning system Eclipse using gamma index and gamma angle.ResultsThe net optical density standard errors of estimate of calibration curves at 6 MV Varian DBX600 linac energy were 0.2%, 0.4% and 0.2% for the red, green and blue channels. Tests of these curves by means of three independent eight dose points measurement series, at 15 MV and 6 MV Varian 2100C linac and at 6 MV DBX600 linac energies, showed less than 2% of dose errors for the red channel and less than 3% for the green channel in the range 100–450 cGy. The comparisons between dose distributions from Gafchromic EBT3 triple channel algorithm and the ones from Eclipse analytic anisotropic algorithm (AAA) showed values of gamma index 95th percentile between 0.6 and 1.0.ConclusionThe obtained results encourage the application of this tool in radiation therapy quality assurance.  相似文献   

9.
AimTo validate and implement Monte Carlo simulation using PRIMO code as a tool for checking the credibility of measurements in LINAC initial commissioning and routine Quality Assurance (QA). Relative and absolute doses of 6 MV photon beam from TrueBeam STx Varian Linear Accelerator (LINAC) were simulated and validated with experimental measurement, Analytical Anisotropic Algorithm (AAA) calculation, and golden beam.Methods and MaterialsVarian phase-space files were imported to the PRIMO code and four blocks of jaws were simulated to determine the field size of the photon beam. Water phantom was modeled in the PRIMO code with water equivalent density. Golden beam data, experimental measurement, and AAA calculation results were imported to PRIMO code for gamma comparison.ResultsPRIMO simulations of Percentage Depth Dose (PDD) and in-plane beam profiles had good agreement with experimental measurements, AAA calculations and golden beam. However, PRIMO simulations of cross-plane beam profiles have a better agreement with AAA calculation and golden beam than the experimental measurement. Furthermore, PRIMO simulations of absolute dose agreed well with experimental results with ±0.8% uncertainty.ConclusionThe PRIMO code has good accuracy and is appropriate for use as a tool to check the credibility of beam scanning and output measurement in initial commissioning and routine QA.  相似文献   

10.
PurposeIn radiotherapy, accurate calculation of patient radiation dose is very important for good clinical outcome. In the presence of metallic implants, the dose calculation accuracy could be compromised by metal artefacts generated in computed tomography (CT) images of patients. This study investigates the influence of metal-induced CT artefacts on MC dose calculations in a pelvic prosthesis phantom.MethodsA pelvic phantom containing unilateral Ti prosthesis was CT-scanned and accurate Hounsfield unit (HU) values were assigned to known materials of the phantom as opposed to HU values produced through the artefact CT images of the phantom. Using the DOSXYZnrc MC code, dose calculations were computed in the phantom model constructed from the original CT images containing the artefacts and artefact-free images made from the exact geometry of the phantom with known materials. The dose calculations were benchmarked against Gafchromic EBT3 film measurements using 15 MeV electron and 10 MV photon beams.ResultsThe average deviations between film and MC dose data decreased from 3 ± 2% to 1 ± 1% and from about 6 ± 2% to 3 ± 1% for the artefact and artefact-free phantom models against film data for the electron and photon fields, respectively.ConclusionsFor the Ti prosthesis phantom, the presence of metal-induced CT artefacts could cause dose inaccuracies of about 3%. Construction of an artefact-free phantom model made from the exact geometry of the phantom with known materials to overcome the effect of artefacts is advantageous compared to using CT data directly of which the exact tissue composition is not well-known.  相似文献   

11.
AimThis study aimed to commission the Elekta Infinity™ working in 6 and 10 MV photon beam installed in Concord International Hospital, Singapore, and compare the OFs between MC simulation and measurement using PTW semiflex and microDiamond detector for small field sizes.Material and MethodsThere are two main steps in this study: modelling of Linac 6 and 10 MV photon beam and analysis of the output factors for field size 2 × 2–10 × 10 cm2. The EGSnrc/BEAMnrc-DOSXYZnrc code was used to model and characterize the Linac and to calculate the dose distributions in a water phantom. The dose distribution and OFs were compared to the measurement data in the same condition.ResultsThe commissioning process was only conducted for a 10 × 10 cm2 field size. The PDD obtained from MC simulation showed a good agreement with the measurement. The local dose difference of PDDs was less than 2% for 6 and 10 MV. The initial electron energy was 5.2 and 9.4 MeV for 6 and 10 MV photon beam, respectively. This Linac model can be used for dose calculation in other situations and different field sizes because this Linac has been commissioned and validated using Monte Carlo simulation. The 10 MV Linac produces higher electron contamination than that of 6 MV.ConclusionsThe Linac model in this study was acceptable. The most important result in this work comes from OFs resulted from MC calculation. This value was more significant than the OFs from measurement using semiflex and microDiamond for all beam energy and field sizes because of the CPE phenomenon.  相似文献   

12.
ObjectivesTo verify the dosimetric accuracy of treatment plans in high dose rate (HDR) brachytherapy by using Gafchromic EBT2 film and to demonstrate the adequacy of dose calculations of a commercial treatment planning system (TPS) in a heterogeneous medium.MethodsAbsorbed doses at chosen points in anatomically different tissue equivalent phantoms were measured using Gafchromic EBT2 film. In one case, tandem ovoid brachytherapy was performed in a homogeneous cervix phantom, whereas in the other, organ heterogeneities were introduced in a phantom to replicate the upper thorax for esophageal brachytherapy treatment. A commercially available TPS was used to perform treatment planning in each case and the EBT2 films were irradiated with the HDR Ir-192 brachytherapy source.ResultsFilm measurements in the cervix phantom were found to agree with the TPS calculated values within 3% in the clinically relevant volume. In the thorax phantom, the presence of surrounding heterogeneities was not seen to affect the dose distribution in the volume being treated, whereas, a little dose perturbation was observed at the lung surface. Doses to the spinal cord and to the sternum bone were overestimated and underestimated by 14.6% and 16.5% respectively by the TPS relative to the film measurements. At the trachea wall facing the esophagus, a dose reduction of 10% was noticed in the measurements.ConclusionsThe dose calculation accuracy of the TPS was confirmed in homogeneous medium, whereas, it was proved inadequate to produce correct dosimetric results in conditions of tissue heterogeneity.  相似文献   

13.
PurposeWe aimed to identify the most accurate combination of phantom and protocol for image value to density table (IVDT) on volume-modulated arc therapy (VMAT) dose calculation based on kV-Cone-beam CT imaging, for head and neck (H&N) and pelvic localizations.MethodsThree phantoms (Catphan®600, CIRS®062M (inner phantom for head and outer phantom for body), and TomoTherapy® “Cheese” phantom) were used to create IVDT curves of CBCT systems with two different CBCT protocols (Standard-dose Head and Standard Pelvis). Hounsfield Unit (HU) time stability and repeatability for a single On-Board-Imager (OBI) and compatibility of two distinct devices were assessed with Catphan®600. Images from the anthropomorphic phantom CIRS ATOM® for both CT and CBCT modalities were used for VMAT dose calculation from different IVDT curves. Dosimetric indices from CT and CBCT imaging were compared.ResultsIVDT curves from CBCT images were highly different depending on phantom used (up to 1000 HU for high densities) and protocol applied (up to 200 HU for high densities). HU time stability was verified over seven weeks. A maximum difference of 3% on the dose calculation indices studied was found between CT and CBCT VMAT dose calculation across the two localizations using appropriate IVDT curves. One IVDT curve per localization can be established with a bi-monthly verification of IVDT-CBCT.ConclusionsThe IVDT-CBCTCIRS-Head phantom with the Standard-dose Head protocol was the most accurate combination for dose calculation on H&N CBCT images. For pelvic localizations, the IVDT-CBCTCheese established with the Standard Pelvis protocol provided the best accuracy.  相似文献   

14.
PurposeBone cement used for vertebroplasty can affect the accuracy on the dose calculation of the radiation therapy treatment. In addition the CT values of high density objects themselves can be misrepresented in kVCT images. The aim of our study is then to propose a streamlined approach for estimating the real density of cement implants used in stereotactic body radiation therapy.MethodsSeveral samples of cement were manufactured and irradiated in order to investigate the impact of their composition on the radiation dose. The validity of the CT conversion method for a range of photon energies was investigated, for the studied samples and on six patients. Calculations and measurements were carried out with various overridden densities and dose prediction algorithms (AXB with dose-to-medium reporting or AAA) in order to find the effective density override.ResultsRelative dose differences of several percent were found between the dose measured and calculated downstream of the implant using an ion chamber and TPS or EPID dosimetry. If the correct density is assigned to the implant, calculations can provide clinically acceptable accuracy (gamma criteria of 3%/2 mm). The use of MV imaging significantly favors the attribution of a correct equivalent density to the implants compared to the use of kVCT images.ConclusionThe porosity and relative density of the various studied implants vary significantly. Bone cement density estimations can be characterized using MV imaging or planar in vivo dosimetry, which could help determining whether errors in dose calculations are due to incorrect densities.  相似文献   

15.
PurposeValidate the skin dose software within the radiation dose index monitoring system NEXO[DOSE]® (Bracco Injeneering S.A., Lausanne, Switzerland). It provides the skin dose distribution in interventional radiology (IR) procedures.MethodsTo determine the skin dose distribution and the Peak Skin Dose (PSD) in IR procedures, the software uses exposure and geometrical parameters taken from the radiation dose structured report and additional information specific to each angiographic system. To test the accuracy of the software, GafChromic® XR-RV3 films, wrapped under a cylindrical PMMA phantom, were irradiated with different setups. Calculations and films results are compared in terms of absolute dose and geometric accuracy, using two angiographic systems (Philips Integris Allura FD20, Siemens AXIOM-ArtisZeego).ResultsCalculated and film measured PSD values agree with an average difference of 7% ± 5%. The discrepancies in dose evaluation increase up to 33% in lower dose regions, because the algorithm does not consider the out-of-field scatter contribution of the neighboring fields, which is more significant in these areas. Regarding the geometric accuracy, the differences between the simulated dose spatial distributions and the measured ones are<3 mm (4%) in simple tests and 5 mm (5%) in setups closer to clinical practice. Moreover, similar results are obtained for the two studied angiographic system vendors.ConclusionsNEXO[DOSE]® provides an accurate skin dose distribution and PSD estimate. It will allow faster and more accurate monitoring of patient follow-up in the future.  相似文献   

16.
PurposeTo evaluate the uncertainties and characteristics of radiochromic film-based dosimetry system using the EBT3 model Gafchromic® film in therapy photon, electron and proton beams.Material and methodsEBT3 films were read using an EPSON Expression 10000XL/PRO scanner. They were irradiated in five beams, an Elekta SL25 6 MV and 18 MV photon beam, an IBA 100 MeV 5 × 5 cm2 proton beam delivered by pencil-beam scanning, a 60 MeV fixed proton beam and an Elekta SL25 6 MeV electron beam. Reference dosimetry was performed using a FC65-G chamber (Elekta beam), a PPC05 (IBA beam) and both Markus 1916 and PPC40 Roos ion-chambers (60 MeV proton beam). Calibration curves of the radiochromic film dosimetry system were acquired and compared within a dose range of 0.4–10 Gy. An uncertainty budget was estimated on films irradiated by Elekta SL25 by measuring intra-film and inter-film reproducibility and uniformity; scanner uniformity and reproducibility; room light and film reading delay influences.ResultsThe global uncertainty on acquired optical densities was within 0.55% and could be reduced to 0.1% by placing films consistently at the center of the scanner. For all beam types, the calibration curves are within uncertainties of measured dose and optical densities. The total uncertainties on calibration curve due to film reading and fitting were within 1.5% for photon and proton beams. For electrons, the uncertainty was within 2% for dose superior to 0.8 Gy.ConclusionsThe low combined uncertainty observed and low beam and energy-dependence make EBT3 suitable for dosimetry in various applications.  相似文献   

17.
AimThis study compared volumetric-modulated arc therapy (VMAT) plans for head and neck cancers with and without an external body contour extended technique (EBCT).BackgroundDose calculation algorisms for VMAT have limitations in the buildup region.Materials and methodsThree VMAT plans were enrolled, with one case having a metal artifact from an artificial tooth. The proper dose was calculated using Eclipse version 11.0. The body contours were extended 2 cm outward from the skin surface in three-dimensional space, and the dose was recalculated with an anisotropic analytical algorithm (AAA) and Acuros XB (AXB). Monitor units (MUs) were set, and the dose distributions in the planning target volume (PTV), clinical target volume, and organ at risk (OAR) and conformity index (CI) with and without an EBCT were compared. The influence of a metal artifact outside of the thermoplastic head mask was also compared.ResultsThe coverage of PTV by the 95% dose line near the patient’s skin was increased drastically by using an EBCT. Plan renormalization had a negligible impact on MUs and doses delivered to OARs. CI of PTV with a 6-MV photon beam was closer to 1 than that with a 10-MV photon beam when both AAA and AXB were used in all cases. Metal artifacts outside the head mask had no effect on dose distribution.ConclusionsAn EBCT is needed to estimate the proper dose at object volumes near the patient’s skin and can improve the accuracy of the calculated dose at target volumes.  相似文献   

18.
PurposeAt introduction in 2014, dose calculation for the first MLC on a robotic SRS/SBRT platform was limited to a correction-based Finite-Size Pencil Beam (FSPB) algorithm. We report on the dosimetric accuracy of a novel Monte Carlo (MC) dose calculation algorithm for this MLC, included in the Precision™ treatment planning system.MethodsA phantom was built of one slab (5.0 cm) of lung-equivalent material (0.09…0.29 g/cc) enclosed by 3.5 cm (above) and 5 cm (below) slabs of solid water (1.045 g/cc). This was irradiated using rectangular (15.4 × 15.4 mm2 to 53.8 × 53.7 mm2) and two irregular MLC-fields. Radiochromic film (EBT3) was positioned perpendicular to the slabs and parallel to the beam. Calculated dose distributions were compared to film measurements using line scans and 2D gamma analysis.ResultsMeasured and MC calculated percent depth dose curves showed a characteristic dose drop within the low-density region, which was not correctly reproduced by FSPB. Superior average gamma pass rates (2%/1 mm) were found for MC (91.2 ± 1.5%) compared to FSPB (55.4 ± 2.7%). However, MC calculations exhibited localized anomalies at mass density transitions around 0.15 g/cc, which were traced to a simplification in electron transport. Absence of these anomalies was confirmed in a modified build of the MC engine, which increased gamma pass rates to 96.6 ± 1.2%.ConclusionsThe novel MC algorithm greatly improves dosimetric accuracy in heterogeneous tissue, potentially expanding the clinical use of robotic radiosurgery with MLC. In-depth, independent validation is paramount to identify and reduce the residual uncertainties in any software solution.  相似文献   

19.
20.
The aim of this study was to determine the surface doses using GafChromic EBT films and compare them with plane-parallel ionization chamber measurements for 6 and 18 MV high energy photon beams. The measurements were made in a water equivalent solid phantom in the build-up region of the 6 and 18 MV photon beams at 100 cm SSD for various field sizes. Markus type plane-parallel ion chamber with fixed-separation between collecting electrodes was used to measure the percent depth doses. GafChromic EBT film measurements were performed both on the phantom surface and maximum dose depth at the same geometry with ion chamber measurements. The surface doses found using GafChromic EBT film were 15%, 20%, 29%and 39% ± 2% (1SD) for 6 MV photons, 6%, 11%, 23% and 32% ± 2% (1SD) for 18 MV photons at 5, 10, 20 and 30 cm2 field sizes, respectively. GafChromic EBT film provides precise measurements for surface dose in the high energy photons. Agreement between film and plane-parallel chamber measurements was found to be within ±3% for 18 MV photon beams. There was 5% overestimate on the surface doses when compared with the plane-parallel chamber measurements for all field sizes in the 6 MV photon beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号