首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effective predictive and management approaches for species occurring in a metapopulation structure require good understanding of interpopulation connectivity. In this study, we ask whether population genetic structure of marine species with fragmented distributions can be predicted by stepping‐stone oceanographic transport and habitat continuity, using as model an ecosystem‐structuring brown alga, Cystoseira amentacea var. stricta. To answer this question, we analysed the genetic structure and estimated the connectivity of populations along discontinuous rocky habitat patches in southern Italy, using microsatellite markers at multiple scales. In addition, we modelled the effect of rocky habitat continuity and ocean circulation on gene flow by simulating Lagrangian particle dispersal based on ocean surface currents allowing multigenerational stepping‐stone dynamics. Populations were highly differentiated, at scales from few metres up to thousands of kilometres. The best possible model fit to explain the genetic results combined current direction, rocky habitat extension and distance along the coast among rocky sites. We conclude that a combination of variable suitable habitat and oceanographic transport is a useful predictor of genetic structure. This relationship provides insight into the mechanisms of dispersal and the role of life‐history traits. Our results highlight the importance of spatially explicit modelling of stepping‐stone dynamics and oceanographic directional transport coupled with habitat suitability, to better describe and predict marine population structure and differentiation. This study also suggests the appropriate spatial scales for the conservation, restoration and management of species that are increasingly affected by habitat modifications.  相似文献   

2.
Although a number of recent studies of marine holoplankton have reported significant genetic structure among populations, little is currently known about the biological and oceanographic processes that influence population connectivity in oceanic plankton. In order to examine how depth preferences influence dispersal in oceanic plankton, I characterized the genetic structure of a copepod with diel vertical migration (DVM) (Pleuromamma xiphias), throughout its global distribution, and compared these results to those expected given the interaction of this species' habitat depth with ocean circulation and bathymetry. Mitochondrial COI sequences from 651 individuals from 28 sites in the Indian, Pacific, and Atlantic Oceans revealed highly significant genetic differentiation both within and among ocean basins. Limited dispersal among distinct pelagic provinces seems to have played a major role in population differentiation in this species, with strong genetic breaks observed across known oceanographic fronts or current systems in all three ocean basins. The Indo-West Pacific (IWP) holds a highly distinct genetic population of this species that was sampled in both the western Pacific and eastern Indian Oceans. This suggests that the IWP does not act as a strong barrier to gene flow between basins, as expected, despite the relatively shallow water depth (<200 m) and vertically extensive (>400 m) diel migration of this species. A pattern of isolation by distance was observed in the Indian Ocean with genetic differentiation among samples down to spatial scales of ~800 km, indicating that realized dispersal in P. xiphias occurs over much smaller spatial scales than in previously reported oceanic holoplankton. Given its highly regionalized population genetic structure, P. xiphias may have some capacity to adapt to local oceanographic conditions, and it should not be assumed that populations of this species in distinct pelagic biomes will respond in the same way to shared physical or climatic forcing.  相似文献   

3.
Population genetics is a powerful tool for measuring important larval connections between marine populations [1-4]. Similarly, oceanographic models based on environmental data can simulate particle movements in ocean currents and make quantitative estimates of larval connections between populations possible [5-9]. However, these two powerful approaches have remained disconnected because no general models currently provide a means of directly comparing dispersal predictions with empirical genetic data (except, see [10]). In addition, previous genetic models have considered relatively simple dispersal scenarios that are often unrealistic for marine larvae [11-15], and recent landscape genetic models have yet to be applied in a marine context [16-20]. We have developed a genetic model that uses connectivity estimates from oceanographic models to predict genetic patterns resulting from larval dispersal in a Caribbean coral. We then compare the predictions to empirical data for threatened staghorn corals. Our coupled oceanographic-genetic model predicts many of the patterns observed in this and other empirical datasets; such patterns include the isolation of the Bahamas and an east-west divergence near Puerto Rico [3, 21-23]. This new approach provides both a valuable tool for predicting genetic structure in marine populations and a means of explicitly testing these predictions with empirical data.  相似文献   

4.
Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well‐connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean‐warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph‐theoretical approach based on centrality (eigenvector and distance‐weighted fragmentation) of habitat patches can help design better‐connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation‐only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity.  相似文献   

5.
Ocean currents are expected to be the predominant environmental factor influencing the dispersal of planktonic larvae or spores; yet, their characterization as predictors of marine connectivity has been hindered by a lack of understanding of how best to use oceanographic data. We used a high-resolution oceanographic model output and Lagrangian particle simulations to derive oceanographic distances (hereafter called transport times) between sites studied for Macrocystis pyrifera genetic differentiation. We build upon the classical isolation-by-distance regression model by asking how much additional variability in genetic differentiation is explained when adding transport time as predictor. We explored the extent to which gene flow is dependent upon seasonal changes in ocean circulation. Because oceanographic transport between two sites is inherently asymmetric, we also compare the explanatory power of models using the minimum or the mean transport times. Finally, we compare the direction of connectivity as estimated by the oceanographic model and genetic assignment tests. We show that the minimum transport time had higher explanatory power than the mean transport time, revealing the importance of considering asymmetry in ocean currents when modelling gene flow. Genetic assignment tests were much less effective in determining asymmetry in gene flow. Summer-derived transport times, in particular for the month of June, which had the strongest current speed, greatest asymmetry and highest spore production, resulted in the best-fit model explaining twice the variability in genetic differentiation relative to models that use geographic distance or habitat continuity. The best overall model also included habitat continuity and explained 65% of the variation in genetic differentiation among sites.  相似文献   

6.
Although theory dictates that limited gene flow between populations is a necessary precursor to speciation under allopatric and parapatric models, it is currently unclear how genetic differentiation between conspecific populations can arise in open-ocean plankton species. I examined two recently distinguished sympatric, circumglobal sister species, Eucalanus hyalinus and Eucalanus spinifer, for population genetic structure throughout their global biogeographic ranges. Here I show that oceanic zooplankton species can be highly genetically structured on macrogeographic spatial scales, despite experiencing extensive gene flow within features of the large-scale ocean circulation. Mitochondrial DNA analyses of 450 and 383 individuals of E. hyalinus and E. spinifer, respectively, revealed that habitat discontinuities at the boundaries of subtropical gyres in the North and South Pacific, as well as continental land masses, acted as effective barriers to gene flow for both species. However, the impact of specific barriers on population genetic structure varied between the sister species, despite their close phylogenetic relationship and similar circumglobal biogeogeographic distributions. The sister species differed in their oceanographic distributions, with E. spinifer dominating oligotrophic waters of the subtropical gyres and E. hyalinus more abundant along central water mass boundaries and in frontal zones and upwelling systems. This species-specific difference in the oceanographic habitat is an important factor determining the historical and contemporary patterns of dispersal of the two species. I suggest that species-specific ecological differences are likely to be a primary determinant of population genetic structure of open-ocean plankton.  相似文献   

7.
Coastal populations are often connected by unidirectional current systems, but the biological effects of such asymmetric oceanographic connectivity remain relatively unstudied. We used mtDNA analysis to determine the phylogeographic origins of beach‐cast bull‐kelp (Durvillaea antarctica) adults in the Canterbury Bight, a 180 km coastal region devoid of rocky‐reef habitat in southern New Zealand. A multi‐year, quantitative analysis supports the oceanographically derived hypothesis of asymmetric dispersal mediated by the north‐flowing Southland Current. Specifically, 92% of beach‐cast specimens examined had originated south of the Bight, many drifting north for hundreds of kilometres, and some traversing at least 500 km of ocean from subantarctic sources. In contrast, only 8% of specimens had dispersed south against the prevailing current, and these counter‐current dispersers likely travelled relatively small distances (tens of kilometres). These data show that oceanographic connectivity models can provide robust estimates of passive biological dispersal, even for highly buoyant taxa. The results also indicate that there are no oceanographic barriers to kelp dispersal across the Canterbury Bight, indicating that other ecological factors explain the phylogeographic disjunction across this kelp‐free zone. The large number of long‐distance dispersal events detected suggests drifting macroalgae have potential to facilitate ongoing connectivity between otherwise isolated benthic populations.  相似文献   

8.
Understanding the movement of genes and individuals across marine seascapes is a long‐standing challenge in marine ecology and can inform our understanding of local adaptation, the persistence and movement of populations, and the spatial scale of effective management. Patterns of gene flow in the ocean are often inferred based on population genetic analyses coupled with knowledge of species' dispersive life histories. However, genetic structure is the result of time‐integrated processes and may not capture present‐day connectivity between populations. Here, we use a high‐resolution oceanographic circulation model to predict larval dispersal along the complex coastline of western Canada that includes the transition between two well‐studied zoogeographic provinces. We simulate dispersal in a benthic sea star with a 6–10 week pelagic larval phase and test predictions of this model against previously observed genetic structure including a strong phylogeographic break within the zoogeographical transition zone. We also test predictions with new genetic sampling in a site within the phylogeographic break. We find that the coupled genetic and circulation model predicts the high degree of genetic structure observed in this species, despite its long pelagic duration. High genetic structure on this complex coastline can thus be explained through ocean circulation patterns, which tend to retain passive larvae within 20–50 km of their parents, suggesting a necessity for close‐knit design of Marine Protected Area networks.  相似文献   

9.
Bottlenose dolphins (Tursiops truncatus) are widely distributed and a high degree of morphometric and genetic differentiation has been found among both allopatric and parapatric populations. We analysed 145 samples along a contiguous distributional range from the Black Sea to the eastern North Atlantic for mitochondrial and nuclear genetic diversity, and found population structure with boundaries that coincided with transitions between habitat regions. These regions can be characterized by ocean floor topography, and oceanographic features such as surface salinity, productivity and temperature. At the extremes of this range there was evidence for the directional emigration of females. Bi-parentally inherited markers did not show this directional bias in migration, suggesting a different dispersal strategy for males and females at range margins. However, comparative assessment based on mitochondrial DNA and nuclear markers indicated that neither sex showed a strong bias for greater dispersal on average. These data imply a mechanism for the evolutionary structuring of populations based on local habitat dependence for both males and females.  相似文献   

10.
Dispersal by passive oceanic rafting is considered important for the assembly of biotic communities on islands. However, not much is known about levels of population genetic connectivity maintained by rafting over transoceanic distances. We assess the evolutionary impact of kelp-rafting by estimating population genetic differentiation in three kelp-associated invertebrate species across a system of islands isolated by oceanic gaps for over 5 million years, using mtDNA and AFLP markers. The species occur throughout New Zealand''s subantarctic islands, but lack pelagic stages and any opportunity for anthropogenic transportation, and hence must rely on passive rafting for long-distance dispersal. They all have been directly observed to survive transoceanic kelp-rafting journeys in this region. Our analyses indicate that regular gene flow occurs among populations of all three species between all of the islands, especially those on either side of the subtropical front oceanographic boundary. Notwithstanding its perceived sporadic nature, long-distance kelp-rafting appears to enable significant gene flow among island populations separated by hundreds of kilometres of open ocean.  相似文献   

11.
The processes that produce and maintain genetic structure in organisms operate at different timescales and on different life‐history stages. In marine macroalgae, gene flow occurs through gamete/zygote dispersal and rafting by adult thalli. Population genetic patterns arise from this contemporary gene flow interacting with historical processes. We analyzed spatial patterns of mitochondrial DNA variation to investigate contemporary and historical dispersal patterns in the New Zealand endemic fucalean brown alga Carpophyllum maschalocarpum (Turner) Grev. Populations bounded by habitat discontinuities were often strongly differentiated from adjoining populations over scales of tens of kilometers and intrapopulation diversity was generally low, except for one region of northeast New Zealand (the Bay of Plenty). There was evidence of strong connectivity between the northern and eastern regions of New Zealand’s North Island and between the North and South Islands of New Zealand and the Chatham Islands (separated by 650 km of open ocean). Moderate haplotypic diversity was found in Chatham Islands populations, while other southern populations showed low diversity consistent with Last Glacial Maximum (LGM) retreat and subsequent recolonization. We suggest that ocean current patterns and prevailing westerly winds facilitate long‐distance dispersal by floating adult thalli, decoupling genetic differentiation of Chatham Island populations from dispersal potential at the gamete/zygote stage. This study highlights the importance of encompassing the entire range of a species when inferring dispersal patterns from genetic differentiation, as realized dispersal distances can be contingent on local or regional oceanographic and historical processes.  相似文献   

12.
Benzie  J. A. H. 《Hydrobiologia》2000,419(1):1-14
The basic assumptions that widespread marine species should show little spatial variation in genetic structure, given their high potential for dispersal on ocean currents, is being questioned. This has taken some time because there are few studies of widespread marine species over oceanic scales, few data sets that have the high density of sampling required for the detection of fine population structure, and there is little incentive to look further if initial analyses suggest the expected result. The interpretation of the population genetic structure of crown-of-thorns starfish (Acanthaster planci) has been found to vary considerably depending on the sample set included in the analyses and on the method of analysis used. Scatter plots of genetic distance or , and spatial autocorrelation approaches gave markedly different results ranging from no structure to isolation by distance. Only visual examination of maps of patterns of variation in allele variation first detected that crown-of-thorns starfish occupy large regions with little between population differentiation, but between which there are markedly higher levels of differentiation. These findings highlight the care required in interpreting population structure, particularly where there are few sample points. Many marine species may have population structures where sharp genetic disjunctions, not associated with any obvious environmental boundaries, separate regions of relative genetic homogeneity. Such population structures are very different from those traditionally assumed and are not yet understood. Further advances in understanding the genetic structure of marine species will demand an iterative approach where a greater number of samples are collected over particular regions identified by earlier interpretations.  相似文献   

13.
14.
Identifying which factors shape the distribution of intraspecific genetic diversity is central in evolutionary and conservation biology. In the marine realm, the absence of obvious barriers to dispersal can make this task more difficult. Nevertheless, recent studies have provided valuable insights into which factors may be shaping genetic structure in the world's oceans. These studies were, however, generally conducted on marine organisms with larval dispersal. Here, using a seascape genetics approach, we show that marine productivity and sea surface temperature are correlated with genetic structure in a highly mobile, widely distributed marine mammal species, the short-beaked common dolphin. Isolation by distance also appears to influence population divergence over larger geographical scales (i.e. across different ocean basins). We suggest that the relationship between environmental variables and population structure may be caused by prey behaviour, which is believed to determine common dolphins' movement patterns and preferred associations with certain oceanographic conditions. Our study highlights the role of oceanography in shaping genetic structure of a highly mobile and widely distributed top marine predator. Thus, seascape genetic studies can potentially track the biological effects of ongoing climate-change at oceanographic interfaces and also inform marine reserve design in relation to the distribution and genetic connectivity of charismatic and ecologically important megafauna.  相似文献   

15.
Genetic connectivity and geographic fragmentation are two opposing mechanisms determining the population structure of species. While the first homogenizes the genetic background across populations the second one allows their differentiation. Therefore, knowledge of processes affecting dispersal of marine organisms is crucial to understand their genetic distribution patterns and for the effective management of their populations. In this study, we use genetic analyses of eleven microsatellites in combination with oceanographic satellite and dispersal simulation data to determine distribution patterns for Serranus cabrilla, a ubiquitous demersal broadcast spawner, in the Mediterranean Sea. Pairwise population FST values ranged between ?0.003 and 0.135. Two genetically distinct clusters were identified, with a clear division located between the oceanographic discontinuities at the Ibiza Channel (IC) and the Almeria‐Oran Front (AOF), revealing an admixed population in between. The Balearic Front (BF) also appeared to dictate population structure. Directional gene flow on the Spanish coast was observed as S. cabrilla dispersed from west to east over the AOF, from north to south on the IC and from south of the IC towards the Balearic Islands. Correlations between genetic and oceanographic data were highly significant. Seasonal changes in current patterns and the relationship between ocean circulation patterns and spawning season may also play an important role in population structure around oceanographic fronts.  相似文献   

16.
Mangrove forests are systems that provide ecosystem services and rely on floating propagules of which the dispersal trajectories are determined by ocean currents and winds. Quantitating connectivity of mangrove patches is an important conservation concern. Current estimates of connectivity, however, fail to integrate the link between ocean currents at different spatial scales and dispersal trajectories. Here, we use high‐resolution estimates of ocean currents and surface winds from meteorological and oceanographic analyses, in conjunction with experimental data on propagule traits (e.g., density, size, and shape) and dispersal vector properties (e.g., strength and direction of water and wind currents). We incorporate these data in a dispersal model to illustrate the potential effect of wind on dispersal trajectories of hydrochorous propagules from different mangrove species. We focus on the Western Indian Ocean, including the Mozambique Channel, which has received much attention because of its reported oceanic complexity, to illustrate the effect of oceanic features such as eddy currents and tides. In spite of the complex pattern of ocean surface currents and winds, some propagules are able to cross the Mozambique Channel. Eddy currents and tides may delay arrival at a suitable site. Experimentally demonstrated differences in wind sensitivity among propagule types were shown to affect the probability of departure and the shape of dispersal trajectories. The model could be used to reconstruct current fluxes of mangrove propagules that may help explain past and current distributions of mangrove forests and assess the potential for natural expansion of these forests.  相似文献   

17.
Deep‐sea hydrothermal vents provide ephemeral habitats for animal communities that depend on chemosynthetic primary production. Sporadic volcanic and tectonic events destroy local vent fields and create new ones. Ongoing dispersal and cycles of extirpation and colonization affect the levels and distribution of genetic diversity in vent metapopulations. Several species exhibit evidence for stepping‐stone dispersal along relatively linear, oceanic, ridge axes. Other species exhibit very high rates of gene flow, although natural barriers associated with variation in depth, deep‐ocean currents, and lateral offsets of ridge axes often subdivide populations. Various degrees of impedance to dispersal across such boundaries are products of species‐specific life histories and behaviours. Though unrelated to the size of a species range, levels of genetic diversity appear to correspond with the number of active vent localities that a species occupies within its range. Pioneer species that rapidly colonize nascent vents tend to be less subdivided and more diverse genetically than species that are slow to establish colonies at vents. Understanding the diversity and connectivity of vent metapopulations provides essential information for designing deep‐sea preserves in regions that are under consideration for submarine mining of precious metals.  相似文献   

18.
Organismal movement is an essential component of ecological processes and connectivity among ecosystems. However, estimating connectivity and identifying corridors of movement are challenging in oceanic organisms such as young turtles that disperse into the open sea and remain largely unobserved during a period known as ‘the lost years’. Using predictions of transport within an ocean circulation model and data from published genetic analysis, we present to our knowledge, the first basin-scale hypothesis of distribution and connectivity among major rookeries and foraging grounds (FGs) of green turtles (Chelonia mydas) during their ‘lost years’. Simulations indicate that transatlantic dispersal is likely to be common and that recurrent connectivity between the southwestern Indian Ocean and the South Atlantic is possible. The predicted distribution of pelagic juvenile turtles suggests that many ‘lost years hotspots’ are presently unstudied and located outside protected areas. These models, therefore, provide new information on possible dispersal pathways that link nesting beaches with FGs. These pathways may be of exceptional conservation concern owing to their importance for sea turtles during a critical developmental period.  相似文献   

19.
To help stem the precipitous decline of coral reef ecosystems world-wide, conservation efforts are focused on establishing interconnected reserve networks to protect threatened populations. Because many coral reef organisms have a planktonic or pelagic larval dispersal phase, it is critical to understand the patterns of ecological connectivity between reserve populations that result from larval dispersal. We used genetics to infer dispersal patterns among 24 Indo-West Pacific populations of the mantis shrimp, Haptosquilla pulchella. Contrary to predictions of high dispersal facilitated by the strong currents of the Indonesian throughflow, mitochondrial DNA sequences from 393 individuals displayed striking patterns of regional genetic differentiation concordant with ocean basins isolated during periods of lowered sea level. Patterns of genetic structuring indicate that although dispersal within geographical regions with semicontiguous coastlines spanning thousands of kilometres may be common, ecologically meaningful connections can be rare among populations separated by as little as 300 km of open ocean. Strong genetic mosaics in a species with high dispersal potential highlight the utility of genetics for identifying regional patterns of genetic connectivity between marine populations and show that the assumption that ocean currents will provide ecological connectivity among marine populations must be empirically tested in the design of marine reserve networks.  相似文献   

20.
Marine populations are typically characterized by weak genetic differentiation due to the potential for long‐distance dispersal favouring high levels of gene flow. However, strong directional advection of water masses or retentive hydrodynamic forces can influence the degree of genetic exchange among marine populations. To determine the oceanographic drivers of genetic structure in a highly dispersive marine invertebrate, the giant California sea cucumber (Parastichopus californicus), we first tested for the presence of genetic discontinuities along the coast of North America in the northeastern Pacific Ocean. Then, we tested two hypotheses regarding spatial processes influencing population structure: (i) isolation by distance (IBD: genetic structure is explained by geographic distance) and (ii) isolation by resistance (IBR: genetic structure is driven by ocean circulation). Using RADseq, we genotyped 717 individuals from 24 sampling locations across 2,719 neutral SNPs to assess the degree of population differentiation and integrated estimates of genetic variation with inferred connectivity probabilities from a biophysical model of larval dispersal mediated by ocean currents. We identified two clusters separating north and south regions, as well as significant, albeit weak, substructure within regions (FST = 0.002, = .001). After modelling the asymmetric nature of ocean currents, we demonstrated that local oceanography (IBR) was a better predictor of genetic variation (R2 = .49) than geographic distance (IBD) (R2 = .18), and directional processes played an important role in shaping fine‐scale structure. Our study contributes to the growing body of literature identifying significant population structure in marine systems and has important implications for the spatial management of P. californicus and other exploited marine species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号