首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Ownby JD  Ross CW 《Plant physiology》1975,55(2):346-351
The incorporation of adenosine-8-14C into adenosine cyclic 3′:5′-monophosphate in coleoptile-first leaf segments of Avena sativa L. was investigated. Homogenates of segments incubated in adenosine-8-14C for either 4 or 10 hours were partially purified by thin layer chromatography followed by paper electrophoresis. A radioactive fraction, less than 0.06% of the 14C present in the original homogenate, migrated as adenosine cyclic 3′:5′-monophosphate during electrophoresis. Upon treatment with cyclic nucleotide phosphodiesterase, however, less than 10% of this radioactive fraction appeared as 5′-AMP. Deamination with NaNO2 as well as further chromatographical purification also suggested that only a small fraction of the 14C in the partially purified samples could be in adenosine cyclic 3′:5′-monophosphate. The data suggest that levels of this nucleotide can probably be no greater than 7 to 11 picomoles per gram of fresh weight in oat coleoptiles. Treatment of such coleoptiles with physiologically active concentrations of indoleacetic acid, furthermore, had no significant effect on the 14C radioactivity in marker adenosine cyclic 3′:5′-monophosphate-containing fractions at any stage of purification during several experiments.  相似文献   

2.
Early-onset torsion dystonia (EOTD) is a neurological disorder characterized by involuntary and sustained muscle contractions that can lead to paralysis and abnormal posture. EOTD is associated with the deletion of a glutamate (ΔE) in torsinA, an endoplasmic reticulum (ER) resident AAA+ ATPase. To date, the effect of ΔE on torsinA and the reason that this mutation results in EOTD are unclear. Moreover, there are no specific therapeutic options to treat EOTD. To define the underlying biochemical defects associated with torsinAΔE and to uncover factors that might be targeted to offset defects associated with torsinAΔE, we developed a yeast torsinA expression system and tested the roles of ER chaperones in mediating the folding and stability of torsinA and torsinAΔE. We discovered that the ER lumenal Hsp70, BiP, an associated Hsp40, Scj1, and a nucleotide exchange factor, Lhs1, stabilize torsinA and torsinAΔE. BiP also maintained torsinA and torsinAΔE solubility. Mutations predicted to compromise specific torsinA functional motifs showed a synthetic interaction with the ΔE mutation and destabilized torsinAΔE, suggesting that the ΔE mutation predisposes torsinA to defects in the presence of secondary insults. In this case, BiP was required for torsinAΔE degradation, consistent with data that specific chaperones exhibit either pro-degradative or pro-folding activities. Finally, using two independent approaches, we established that BiP stabilizes torsinA and torsinAΔE in mammalian cells. Together, these data define BiP as the first identified torsinA chaperone, and treatments that modulate BiP might improve symptoms associated with EOTD.  相似文献   

3.
DYT1 dystonia is caused by a glutamic acid deletion (ΔE) in the endoplasmic reticulum (ER) protein torsinA. Previous studies suggest that torsinA modulates the aggregation of cytosolic misfolded proteins and ER stress responses, although the mechanisms underlying those effects remain unclear. In order to investigate the bases of these observations, we analyzed the interaction between torsinA expression, protein aggregation and ER stress in PC6.3 cells. Unexpectedly, we found that expression of torsinA(wt) or (ΔE) does not influence the inclusion formation by an expanded polyglutamine reporter protein in this cellular model. Furthermore, torsinA does not prevent the activation of ER stress induced by thapsigargin or the reducing agent DTT. Interestingly, DTT induces post-translational changes in torsinA, more prominently for torsinA(wt) than (ΔE). This work highlights the importance of model system selection for the study of torsinA function. Furthermore, it provides additional evidence suggesting that torsinA is sensitive to changes in the cellular redox potential.  相似文献   

4.
From the protonema of the moss Funaria hygrometrica (L.) Sibth, a factor indistinguishable from cyclic adenosine 3′:5′-monophosphate (cAMP) has been isolated. The factor stimulated the activity of protein kinase from rabbit skeletal muscle and co-chromatographed with authentic cAMP in two solvent systems. Its ability to stimulate protein kinase activity was completely abolished by 3′:5′-cyclic nucleotide phosphodiesterase, the rate of inactivation being similar to that of authentic cAMP. Based on these properties, this factor is identified as 3′,5′-cAMP. Cyclic AMP could be readily removed from the cells and washing the cells with water reduced the endogenous level of cAMP by 2- to 3-fold. A comparison of cAMP levels by protein kinase and Gilman assays was made. The intracellular levels determined by protein kinase assay were about 7-fold lower than the values obtained by Gilman assay. This discrepancy was due to the presence of unidentified compounds which were completely degraded by 3′:5′-cyclic nucleotide phosphodiesterase. Although these displaced labeled cAMP in the Gilman assay, they did not stimulate the protein kinase activity. The protonema may contain cyclic nucleotides other than cAMP; these will not be detected in the protein kinase assay due to the specificity of this reaction. The crude extracts were found to be unsuitable for assaying cAMP by either method.  相似文献   

5.
Sexual reproduction in Gibberella zeae (Fusarium roseum) is regulated by the fungal sex hormone zearalenone, which is known to be synthesized only by species of Fusarium. The presence of cyclic adenosine 3′,5′-monophosphate (cAMP) in mycelium of this fungus has been confirmed by analyses with thin-layer and gas-liquid chromatography, fluorescent properties, ultraviolet absorption, competitive protein-binding tests, and degradation by cyclic phosphodies-terase. cAMP but not cyclic guanosine monophosphate increased both the number of perithecia formed and the incorporation of [1-14C]acetate into zearalenone. It is proposed that cAMP stimulates the synthesis of zearalenone which then exerts its effect directly or indirectly on formation of perithecia.  相似文献   

6.
Cyclic nucleotide phosphodiesterase activity in barley seeds   总被引:4,自引:3,他引:1       下载免费PDF全文
Barley seeds (Hordeum vulgare L. cv. Himalaya) contain an enzymatic activity which catalyzes the hydrolysis of adenosine cyclic 3′: 5′-monophosphate and adenosine cyclic 2′: 3′-monophosphate. A large portion of the enzymatic activity is present in the dry seed, existing in both soluble and particulate form. Secretion of the soluble phosphodiesterase from embryoless seeds is enhanced by gibberellic acid and inhibited by abscisic acid, dinitrophenol, and cycloheximide. Attempts to isolate or detect a phosphodiesterase which specifically hydrolyzes adenosine cyclic 3′: 5′-monophosphate were unsuccessful. Inhibition experiments indicate that probably one enzyme is involved in the hydrolysis of both of these substrates.  相似文献   

7.
A glutamic acid deletion (DeltaE) in the AAA+ protein torsinA causes DYT1 dystonia. Although the majority of torsinA resides within the endoplasmic reticulum (ER), torsinA binds a substrate in the lumen of the nuclear envelope (NE), and the DeltaE mutation enhances this interaction. Using a novel cell-based screen, we identify lamina-associated polypeptide 1 (LAP1) as a torsinA-interacting protein. LAP1 may be a torsinA substrate, as expression of the isolated lumenal domain of LAP1 inhibits the NE localization of "substrate trap" EQ-torsinA and EQ-torsinA coimmunoprecipitates with LAP1 to a greater extent than wild-type torsinA. Furthermore, we identify a novel transmembrane protein, lumenal domain like LAP1 (LULL1), which also appears to interact with torsinA. Interestingly, LULL1 resides in the main ER. Consequently, torsinA interacts directly or indirectly with a novel class of transmembrane proteins that are localized in different subdomains of the ER system, either or both of which may play a role in the pathogenesis of DYT1 dystonia.  相似文献   

8.
《Life sciences》1995,56(25):PL443-PL447
Since striatal dopamine D2 receptor supersensitivity in the etiology of tardive dyskinesia has been suggested and dopamine D2 receptors are known to inhibit adenylate cyclase activity resulting in a decrease of cyclic adenosine 3′,5′-monophosphate (cAMP) levels, we hypothesized that an increase in cAMP levels ameliorates the condition. In the present study, 21-day haloperidol treatment (1.5 mg/kg I.P.) in rats resulted in an increase in striatal [3H]-spiperone (D2) binding whereas [3H] SCH23390 (D1) binding was unaltered. This haloperidol treatment also induced a significantly increase in the frequency of involuntary chewing movements and tongue protrusions, which are considered as a model of tardive dyskinesia. These dyskinetic movements were suppressed by administration of rolipram (0.5 and 1.0 mg/kg I.P.), an inhibitor of the cAMP phosphodiesterase type IV. The present results suggest that selective cAMP phosphodiesterase type IV inhibitors could be putative therapeutic drugs for tardive dyskinesia.  相似文献   

9.
Addition of membrane-permeable cyclic GMP (cGMP) and cyclic AMP (cAMP) were shown to cause elevation of cytosolic Ca2+ concentration ([Ca2+]cyt) in tobacco (Nicotiana plumbaginofolia) protoplasts. Under the same conditions these cyclic nucleotides were shown to provoke a physiological swelling response in the protoplasts. Nonmembrane-permeable cAMP and cGMP were unable to trigger a detectable [Ca2+]cyt response. Cyclic-nucleotide-mediated elevations in [Ca2+]cyt involved both internal and external Ca2+ stores. Both cAMP- and cGMP-mediated [Ca2+]cyt elevations could be inhibited by the Ca2+-channel blocker verapamil. Addition of inhibitors of phosphodiesterases (isobutylmethylxanthine and zaprinast) and the adenylate cyclase agonist forskolin to the protoplasts (predicted to elevate in vivo cyclic-nucleotide concentrations) caused elevations in [Ca2+]cyt. Addition of the adenylate cyclase inhibitor 2′,5′-dideoxyadenosine before forskolin significantly inhibited the forskolin-induced [Ca2+]cyt elevation. Taken together, these data suggest that a potential communication point for cross-talk between signal transduction pathways using cyclic nucleotides in plants is at the level of Ca2+ signaling.  相似文献   

10.
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.  相似文献   

11.
A naturally occurring inhibitor of adenylate cyclase has been found in various rat tissues and toad erythrocytes. The compound containing this inhibitory activity has been isolated from several cell types. Physical, chemical, and enzymatic analyses define this inhibitor as 2'-deoxyadenosine-3'-monophosphate (2'-deoxy-3'-AMP). Measurements of the effect of various nucleoside monophosphates on adenylate cyclase activity reveal that the inhibitory activity is specific for 2'-deoxy-3'-AMP. In addition, the metabolism of this inhibitor may be relatively specific since only aminophylline and cAMP appear to inhibit the breakdown of 2'-dexy-3'-AMP by liver microsomes. The presence of this inhibitor suggests the possibility that deoxynucleotides may play an important role in the action of hormones and the regulation of intracellular metabolism.  相似文献   

12.
Serotonin (5-HT) and dopamine (DA), but not several other putative neurotransmitters, stimulate cyclic adenosine-3',5'-monophosphate (cAMP) production in slices of Aplysia gill. Furthermore, 5-HT but not DA increases cAMP in slices of the heart of Aplysia. Several lines of evidence indicate that the receptors are distinct entities; however, no drugs were found to block one receptor without affecting the other.  相似文献   

13.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2.  相似文献   

14.
A novel mutant of the LLC-PK1 renal epithelial cell line, VPR1, was isolated after mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine and selection using a photoactivatable vasopressin analogue [1-(3-mercapto)propionic acid, 8-(N6-4-azidophenylamidino)lysine] vasopressin. The VPR1 mutant cell line possessed less than 5% parental V2 receptor binding for vasopressin but exhibited normal calcitonin receptor binding. In contrast to LLC-PK1 cells (wild type), VPR1 cells exhibited no response to vasopressin in terms of in vitro adenylate cyclase activation, in vivo cAMP production, or urokinase-type plasminogen activator induction. The responses of VPR1 cells to other agents, such as calcitonin, the adenylate cyclase activator forskolin, the GTP analogue guanosine 5′-[β,γ-imino] triphosphate, 8-bromo adenosine-3′,5′-monophosphate were comparable to those of the parental cell line. Somatic cell hybrids were derived from the cell lines LLC-PK1 and VPR1 and analyzed for the dominance/recessiveness of the VPR1 mutant phenotype. Hybrids were found to possess normal vasopressin binding activity as well as functional responses to the hormone, indicating that the mutation affecting the V2 receptor in VPR1 cells is recessive. The VPR1 cell line may thus have application as a recipient for the expression of the V2 receptor gene using DNA-transfer.  相似文献   

15.
Particulate cell fractions of mycelium of Mucor rouxii contain adenylate cyclase activity which can be partially solubilized by 2% Lubrol PX. The enzyme requires Mn2+ and its activity is not modified by NaF or guanosine nucleotides. Mycelial extracts also contain cyclic adenosine 3′:5′-monophosphate phosphodiesterase activity, 60% of which is soluble. This activity shows characteristic low Km (1 μm) for cyclic AMP and does not hydrolyze cyclic guanosine 3′:5′-monophosphate. It requires Mn2+ ions for maximal activity and is not inhibited by methylxanthines or activated by imidazole. Both enzymatic activities vary during the aerobic life cycle of the fungus. The spores have the highest levels of adenylate cyclase and cAMP phosphodiesterase, which decrease during the aerobic development. At the round cell stage, phosphodiesterase activity reaches 40% of the activity of the spores and varies only slightly thereafter. At this stage the specific activity of adenylate cyclase is 25% of the activity of ungerminated spores, and from this stage on, the activity increases up to the end of the logarithmic phase. Intracellular levels of cyclic AMP have been measured during aerobic germination. The variations of the intracellular level are tentatively explained by unequal variations in the activities of adenylate cyclase and cyclic AMP phosphodiesterase. A continuous increase of the extracellular cyclic AMP level during aerobic development has also been found, which cannot be accounted for solely by variations in the cyclase and diesterase activities.  相似文献   

16.
Endogenous levels of cyclic adenosine-3′:5′-monophosphate in coleoptile first leaf segments of oat (Avena sativa L.), potato (Solanum tuberosum L.) tubers, tobacco (Nicotiana tabacum L.) callus, and germinating seeds of lettuce (Lactuca sativa L.) were measured with a modified Gilman binding assay and a protein kinase activation assay. The incorporation of adenosine-8-14C into compounds with properties similar to those of cyclic AMP was also measured in studies with germinating lettuce seeds. The binding assay proved reliable for mouse and rat liver analyses, but was nonspecific for plant tissues. It responded to various components from lettuce and potato tissues chromatographically similar to but not identical with cyclic AMP. The protein kinase activation assay was much more specific, but it also exhibited positive responses in the presence of compounds not chromatographically identical to cyclic AMP. The concentrations of cyclic AMP in the plant tissues tested were at the lower limits of detection and characterization obtainable with these assays. The estimates of maximal levels were much lower than reported in many previous studies.  相似文献   

17.

Background

The cyclic nucleotides cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic guanosine-3′,5′-monophosphate (cGMP) are important second messengers and are potential biomarkers for Parkinson''s disease (PD), amyotrophic lateral sclerosis (ALS) and Creutzfeldt-Jakob disease (CJD).

Methodology/Principal Findings

Here, we investigated by liquid chromatography/tandem mass spectrometry (LC-MS/MS) the cerebrospinal fluid (CSF) concentrations of cAMP and cGMP of 82 patients and evaluated their diagnostic potency as biomarkers. For comparison with a well-accepted biomarker, we measured tau concentrations in CSF of CJD and control patients. CJD patients (n = 15) had lower cAMP (−70%) and cGMP (−55%) concentrations in CSF compared with controls (n = 11). There was no difference in PD, PD dementia (PDD) and ALS cases. Receiver operating characteristic (ROC) curve analyses confirmed cAMP and cGMP as valuable diagnostic markers for CJD indicated by the area under the curve (AUC) of 0.86 (cAMP) and 0.85 (cGMP). We calculated a sensitivity of 100% and specificity of 64% for cAMP and a sensitivity of 67% and specificity of 100% for cGMP. The combination of both nucleotides increased the sensitivity to 80% and specificity to 91% for the term cAMPxcGMP (AUC 0.92) and to 93% and 100% for the ratio tau/cAMP (AUC 0.99).

Conclusions/Significance

We conclude that the CSF determination of cAMP and cGMP may easily be included in the diagnosis of CJD and could be helpful in monitoring disease progression as well as in therapy control.  相似文献   

18.
Depletion of glucose from the culture medium by Poterioochromonas malhamensis results in cessation of growth and accumulation of cyclic adenosine 3′:5′-monophosphate (cAMP), followed by formation of chlorophyll and an increase in extracellular cAMP. Readdition of glucose to the culture medium causes P. malhamensis to release its intracellular cAMP into the medium. These results suggest that formation of the photosynthetic apparatus in P. malhamensis may be repressed by glucose, and that high cAMP conveys the regulatory information that the glucose supply is inadequate. This pattern is reminiscent of cAMP-mediated escape from catabolite repression in bacteria.  相似文献   

19.
Early onset dystonia is commonly associated with the deletion of one of a pair of glutamate residues (ΔE302/303) near the C terminus of torsinA, a member of the AAA+ protein family (ATPases associated with a variety of cellular activities) located in the endoplasmic reticulum lumen. The functional consequences of the disease-causing mutation, ΔE, are not currently understood. By contrast to other AAA+ proteins, torsin proteins contain two conserved cysteine residues in the C-terminal domain, one of which is located in the nucleotide sensor II motif. Depending on redox status, an ATP hydrolysis mutant of torsinA interacts with lamina-associated polypeptide 1 (LAP1) and lumenal domain like LAP1 (LULL1). Substitution of the cysteine in sensor II diminishes the redox-regulated interaction of torsinA with these substrates. Significantly, the dystonia-causing mutation, ΔE, alters the ability of torsinA to mediate the redox-regulated interactions with LAP1 and LULL1. Limited proteolysis experiments reveal redox- and mutation-dependent changes in the local conformation of torsinA as a function of nucleotide binding. These results indicate that the cysteine-containing sensor II plays a critical role in redox sensing and the nucleotide and partner binding functions of torsinA and suggest that loss of this function of torsinA contributes to the development of DYT1 dystonia.  相似文献   

20.
A 31-year-old man and a 12-year-old girl were diagnosed as pseudohypoparathyroidism (PHP) Type I because of a failure to respond to the administration of parathyroid hormone (PTH) with increased urinary excretion of phosphate and cyclic adenosine-3', 5'-monophosphate (cAMP). A 22-year-old woman was diagnosed as PHP Type II because there was no increase in the urinary excretion of phosphate despite of a marked increase in urinary cAMP excretion. With the combined calcium-PTH infusion or PTH infusion after vitamin D therapy, renal response was improved in these patients. Also dibutyryl adenosine-3'-5'-cyclic monophosphate (dbcAMP) infusion evoked an increased urinary phosphate excretion in all of the patients. The metabolic defect of our patients with PHP Type I may be caused not by a lack or defective form of PTH-sensitive receptor adenylate cyclase complex but rather by an abnormal conformation in the plasma membrane-associated receptor adenylate cyclase enzyme complex in kidney. In the patient with PHP Type II, as cAMP generation is intact, the metabolic defect might be related to a defect of calcium mobilization in renal tubular cells in response to PTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号