首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We investigated the impact of monocytes, NK cells, and CD8+ T-cells in primary HTLV-1 infection by depleting cell subsets and exposing macaques to either HTLV-1 wild type (HTLV-1WT) or to the HTLV-1p12KO mutant unable to infect replete animals due to a single point mutation in orf-I that inhibits its expression. The orf-I encoded p8/p12 proteins counteract cytotoxic NK and CD8+ T-cells and favor viral DNA persistence in monocytes. Double NK and CD8+ T-cells or CD8 depletion alone accelerated seroconversion in all animals exposed to HTLV-1WT. In contrast, HTLV-1p12KO infectivity was fully restored only when NK cells were also depleted, demonstrating a critical role of NK cells in primary infection. Monocyte/macrophage depletion resulted in accelerated seroconversion in all animals exposed to HTLV-1WT, but antibody titers to the virus were low and not sustained. Seroconversion did not occur in most animals exposed to HTLV-1p12KO. In vitro experiments in human primary monocytes or THP-1 cells comparing HTLV-1WT and HTLV-1p12KO demonstrated that orf-I expression is associated with inhibition of inflammasome activation in primary cells, with increased CD47 “don’t-eat-me” signal surface expression in virus infected cells and decreased monocyte engulfment of infected cells. Collectively, our data demonstrate a critical role for innate NK cells in primary infection and suggest a dual role of monocytes in primary infection. On one hand, orf-I expression increases the chances of viral transmission by sparing infected cells from efferocytosis, and on the other may protect the engulfed infected cells by modulating inflammasome activation. These data also suggest that, once infection is established, the stoichiometry of orf-I expression may contribute to the chronic inflammation observed in HTLV-1 infection by modulating monocyte efferocytosis.  相似文献   

2.
The orf-I gene of human T-cell leukemia type 1 (HTLV-1) encodes p8 and p12 and has a conserved cysteine at position 39. p8 and p12 form disulfide-linked dimers, and only the monomeric forms of p8 and p12 are palmitoylated. Mutation of cysteine 39 to alanine (C39A) abrogated dimerization and palmitoylation of both proteins. However, the ability of p8 to localize to the cell surface and to increase cell adhesion and viral transmission was not affected by the C39A mutation.  相似文献   

3.
4.
The p12(I) protein of human T-cell leukemia/lymphoma virus type 1 (HTLV-1) is a small oncoprotein that increases calcium release following protein kinase C activation by phorbol myristate acetate, and importantly, this effect is linker for activation of T cells (LAT) independent. Here, we demonstrate that p12(I) inhibits the phosphorylation of LAT, Vav, and phospholipase C-gamma 1 and decreases NFAT (nuclear factor of activated T cells) activation upon engagement of the T-cell receptor (TCR) with anti-CD3 antibody. Furthermore, we demonstrate that p12(I) localizes to membrane lipid rafts and, upon engagement of the TCR, relocalizes to the interface between T cells and antigen-presenting cells, defined as the immunological synapse. A p12(I) knockout molecular clone of HTLV-1 expresses more virus upon antigen stimulation than the isogenic wild type, suggesting that, by decreasing T-cell responsiveness, p12(I) curtails viral expression. Thus, p12(I) has contrasting effects on TCR signaling: it down-regulates TCR in a LAT-dependent manner on one hand, and on the other, it increases calcium release in a LAT-independent manner. The negative regulation of T-cell activation by p12(I) may have evolved to minimize immune recognition of infected CD4(+) T cells, to impair the function of infected cytotoxic CD8(+) T cells, and to favor viral persistence in the infected host.  相似文献   

5.
6.
7.
Human T-cell leukemia virus type 1 (HTLV-1) infects and transforms CD4+ T-lymphocytes both in vivo and in vitro. Although the Tax protein of HTLV-1 has been strongly implicated as a transforming agent, other virally encoded proteins may also play a role in the transformation process. In addition to the rex and tax genes, the pX region of the HTLV-1 genome contains two open reading frames (pX-I and pX-II) which encode the putative viral accessory proteins known as p12I, p30II, and p13II. Mutations in the ACH molecular clone of HTLV-1 that are predicted to abrogate the expression of p12I, p13II and p30II were constructed. These mutations had no effect on viral replication or the immortalization of primary lymphocytes. Although these proteins are dispensable for viral replication and immortalization in vitro, it remains possible that they alter infection in vivo.  相似文献   

8.
9.
10.
11.
12.
To address Sin Nombre (SN) virus persistence in deer mice, we sacrificed experimentally infected deer mice at eight time points from day 21 to day 217 postinoculation (p.i.) and examined their tissues for viral nucleocapsid (N) antigen expression and both negative-strand (genomic) and positive-strand (replicative/mRNA) viral S segment RNA titers. All the animals that we inoculated developed persistent infections, and SN virus could be isolated from tissues throughout the course of infection. The transition from an acute to a persistent pattern of infection appeared to occur between days 60 and 90 p.i. Beginning on day 60 p.i., the heart, brown adipose tissue (BAT), and lung retained antigen expression and genomic viral RNA the most frequently. We found a statistically significant association among the presence of replicative RNA in the heart, lung, and BAT, widespread antigen expression (in > or =5 tissues), and RNA viremia. Of these three tissues, the heart retained negative-strand RNA and viral N antigen the most consistently (in 25 of 26 animals). During persistence, there were two distinct patterns of infection: restricted versus disseminated tissue involvement. Mice with the restricted pattern exhibited N antigen expression in < or =3 tissues, an absence of viral RNA in the blood, neutralizing antibody titers of < or =1:1,280 (P = 0.01), and no replicative RNA in the heart, lung, or BAT. Those with the "disseminated" pattern showed N antigen expression in > or =5 tissues, neutralizing antibody titers of 1:160 to 1:20,480, replicative RNA in the heart, lung, and BAT at a high frequency, and RNA viremia. Virus could be isolated consistently only from mice that demonstrated the disseminated pattern. The heart, lung, and BAT are important sites for the replication and maintenance of SN virus during persistent infection.  相似文献   

13.
Human T lymphotropic virus type 1 (HTLV-1) mainly causes adult T cell leukemia and predominantly immortalizes/transforms CD4+ T cells in culture. HTLV-2 is aleukemic and predominantly immortalizes/transforms CD8+ T cells in culture. We have shown previously that the viral envelope is the genetic determinant of the differential T cell tropism in culture. The surface component (SU) of the HTLV-1 envelope is responsible for binding to the cellular receptors for entry. Here, we dissect the HTLV-1 SU further to identify key domains that are involved in determining the immortalization tropism. We generated HTLV-1 envelope recombinant virus containing the HTLV-2 SU domain. HTLV-1/SU2 was capable of infecting and immortalizing freshly isolated peripheral blood mononuclear cells in culture. HTLV-1/SU2 shifted the CD4+ T cell immortalization tropism of wild-type HTLV-1 (wtHTLV-1) to a CD8+ T cell preference. Furthermore, a single amino acid substitution, N195D, in HTLV-1 SU (Ach.195) resulted in a shift to a CD8+ T cell immortalization tropism preference. Longitudinal phenotyping analyses of the in vitro transformation process revealed that CD4+ T cells emerged as the predominant population by week 5 in wtHTLV-1 cultures, while CD8+ T cells emerged as the predominant population by weeks 4 and 7 in wtHTLV-2 and Ach.195 cultures, respectively. Our results indicate that SU domain independently influences the preferential T cell immortalization tropism irrespective of the envelope counterpart transmembrane (TM) domain. We further showed that asparagine at position 195 in HTLV-1 SU is involved in determining this CD4+ T cell immortalization tropism. The slower emergence of the CD8+ T cell predominance in Ach.195-infected cultures suggests that other residues/domains contribute to this tropism preference.  相似文献   

14.
Coinfection with human T-cell lymphotropic virus type 2 (HTLV-2) and human immunodeficiency virus type 1 (HIV-1) has been reported to have either a slowed disease course or to have no effect on progression to AIDS. In this study, we generated a coinfection animal model and investigated whether HTLV-2 could persistently infect macaques, induce a T-cell response, and impact simian immunodeficiency virus SIVmac251-induced disease. We found that inoculation of irradiated HTLV-2-infected T cells into Indian rhesus macaques elicited humoral and T-cell responses to HTLV-2 antigens at both systemic and mucosal sites. Low levels of HTLV-2 provirus DNA were detected in the blood, lymphoid tissues, and gastrointestinal tracts of infected animals. Exposure of HTLV-2-infected or naïve macaques to SIVmac251 demonstrated comparable levels of SIVmac251 viral replication, similar rates of mucosal and peripheral CD4+ T-cell loss, and increased T-cell proliferation. Additionally, neither the magnitude nor the functional capacity of the SIV-specific T-cell-mediated immune response was different in HTLV-2/SIVmac251 coinfected animals versus SIVmac251 singly infected controls. Thus, HTLV-2 targets mucosal sites, persists, and importantly does not exacerbate SIVmac251 infection. These data provide the impetus for the development of an attenuated HTLV-2-based vectored vaccine for HIV-1; this approach could elicit persistent mucosal immunity that may prevent HIV-1/SIVmac251 infection.Human T-cell lymphotropic virus type 2 (HTLV-2) was discovered in 1982 and recognized as the second human retrovirus found (29). HTLV-2 is closely related to the first human retrovirus discovered, HTLV-1 (49, 50), a pathogenic virus that causes adult T-cell leukemia/lymphoma (ATLL) and an inflammatory neurologic disorder called HTLV-1-associated myelopathy or tropical spastic paraparesis (HAM/TSP) (22, 45).HTLV-2 is prevalent in Amerindian populations of North and South America and in Africa (57). The prevalence of HTLV-2 is generally low; however, in the past 20 years, an epidemic of HTLV-2 infection has occurred among intravenous drug users (8, 24, 54, 57). HTLV-2 establishes a lifelong infection and replicates at low levels in most infected individuals. While anecdotal cases of TSP/HAM-like neurological manifestations (1, 44) and hematopoietic diseases, such as large granular lymphoma (LGL), in HTLV-2-infected individuals have been reported (3, 37-39, 46), the extent to which HTLV-2 can induce disease in humans remains unclear. Indeed, even in the condition of immune deficiency, such as infection with human immunodeficiency virus type 1 (HIV-1), HTLV-2 coinfection has not been reported to be associated with cancer or neurological diseases. However, more studies are necessary to fully understand the role of HTLV-2 in human disease. While HTLV-1 infection has been connected with an accelerated course of disease in HIV-1 coinfected patients (2, 34), HTLV-2 has been reported to either have no effect (26) or suggested to exert a potential protective role during HIV-1 infection (12, 23). This protective role is thought to be due to a maintenance of CD4+ T cells, lowering immune activation, and delayed progression to AIDS (4, 5). In addition, modulation of cytokine and chemokine networks by HTLV-2 has been suggested to contribute to the control of HIV-1 infection (12, 36, 47). Since studies on the immunological interactions between HIV-1 and HTLV-2 have been performed in patients coinfected with HIV-1 and HTLV-2 in the chronic phase of HIV-1 disease, little is known about the effects of HTLV-2 infection during acute HIV-1 replication, mucosal CD4+ T-cell depletion, or HIV-1-specific immune responses. Furthermore, the potential protective effect of an HTLV-2 vector that would target both CD4+ and CD8+ T cells and induce a low-grade persistent infection makes HTLV-2 an interesting potential vaccine platform for an HIV-1 vaccine.Current HIV-1 vaccine strategies have focused on viral vectors delivering HIV-1 antigens. These vectors stimulate strong, systemic antigen-specific responses but are unable to protect from infection, since they generate only limited mucosal responses and do not persist. The only vaccine approach that has conferred protection in the simian immunodeficiency virus SIVmac251 macaque model is a live attenuated virus (17), suggesting that persistent expression of viral antigens in mucosal and lymphoid tissues may be necessary. An HTLV-2 vector expressing HIV-1 antigens at mucosal sites that stimulates and maintains T-cell responses in the gut may confer protection from infection by quickly eliminating cells infected by the founder virus at the portal of entry. This study establishes that the Indian rhesus macaque model for HTLV-2 infection is a suitable model to test this hypothesis, as it demonstrates that HTLV-2 targets systemic, lymphoid, as well as mucosal tissues of rhesus macaques. HTLV-2 infection induces humoral as well as cell-mediated immune responses, and importantly, T-cell responses can be found at both systemic and mucosal sites. In this study, we demonstrate that the viral and T-cell dynamics of macaques dually infected with HTLV-2 and SIVmac251 are similar to those of macaques singly infected with SIVmac251.  相似文献   

15.
Since calcium-signaling regulates specific and fundamental cellular processes, it represents the ideal target of viral proteins, in order for the virus to control cellular functions and favour its persistence, multiplication and spread. A detailed analysis of reports focused on the impact of viral proteins on calcium-signaling has shown that virus-related elevations of cytosolic calcium levels allow increased viral protein expression (HIV-1, HSV-1/2), viral replication (HBx, enterovirus 2B, HTLV-1 p12(I), HHV-8, EBV), viral maturation (rotavirus), viral release (enterovirus 2B) and cell immortalization (EBV). Interestingly, virus-induced decreased cytosolic calcium levels have been found to be associated with inhibition of immune cells functions (HIV-1 Tat, HHV-8 K15, EBV LMP2A). Finally, several viral proteins are able to modulate intracellular calcium-signaling to control cell viability (HIV-1 Tat, HTLV-1 p13(II), HCV core, HBx, enterovirus 2B, HHV-8 K7). These data point out calcium-signaling as a key cellular target for viral infection and should stimulate further studies exploring new calcium-related therapeutic strategies.  相似文献   

16.
17.
18.
The Human T lymphotropic virus type-1 (HTLV-1) infects predominantly T cells, inducing proliferation and lymphocyte activation. Additionally, HTLV-1 infected subjects are more susceptible to other infections caused by other intracellular agents. Monocytes/macrophages are important cells in the defense against intracellular pathogens. Our aims were to determine the frequency of monocytes subsets, expression of co-stimulatory molecules in these cells and to evaluate microbicidal ability and cytokine and chemokine production by macrophages from HTLV-1 infected subjects. Participants were 23 HTLV-1 carriers (HC), 22 HAM/TSP patients and 22 healthy subjects (HS) not infected with HTLV-1. The frequencies of monocyte subsets and expression of co-stimulatory molecules were determined by flow cytometry. Macrophages were infected with L. braziliensis or stimulated with LPS. Microbicidal activity of macrophages was determined by optic microscopy. Cytokines/chemokines from macrophage supernatants were measured by ELISA. HAM/TSP patients showed an increase frequency of intermediate monocytes, but expression of co-stimulatory molecules was similar between the groups. Macrophages from HTLV-1 infected individuals were infected with L. braziliensis at the same ratio than macrophages from HS, and all the groups had the same ability to kill Leishmania parasites. However, macrophages from HTLV-1 infected subjects produced more CXCL9 and CCL5, and less IL-10 than cells from HS. While there was no correlation between IFN-γ and cytokine/chemokine production by macrophages, there was a correlation between proviral load and TNF and CXCL10. These data showed a dissociation between the inflammatory response and microbicidal ability of macrophages from HTLV-1 infected subjects. While macrophages ability to kill an intracellular pathogen did not differ among HTLV-1 infected subjects, these cells secreted high amount of chemokines even in unstimulated cultures. Moreover the increasing inflammatory activity of macrophages was similar in HAM/TSP patients and HC and it was related to HTLV-1 proviral load rather than the high IFN-γ production observed in these subjects.  相似文献   

19.
Human T-cell leukemia virus type 1 (HTLV-1) infects CD4+ T cells and induces proliferation of infected cells in vivo, which leads to the onset of adult T-cell leukemia (ATL) in some infected individuals. The HTLV-1 bZIP factor (HBZ) gene, which is encoded in the minus strand of HTLV-1, plays critical roles in pathogenesis. In this study, RNA-seq and ChIP-seq analyses using HBZ transduced T cells revealed that HBZ upregulates the expression and promoter acetylation levels of a co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT), in addition to those of regulatory T cells related genes, Foxp3 and Ccr4. TIGIT was expressed on CD4+ T cells from HBZ-transgenic (HBZ-Tg) mice, and on ATL cells and HTLV-1 infected CD4+ T cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in vivo. Expression of Blimp1 and IL-10 was upregulated in TIGIT+CD4+ cells of HBZ-Tg mice compared with TIGIT-CD4+ T cells, suggesting the correlation between TIGIT expression and IL-10 production. When CD4+ T cells from HBZ-Tg mice were stimulated with TIGIT’s ligand, CD155, their production of the inhibitory cytokine IL-10 was enhanced. Furthermore, dendritic cells from HBZ-Tg mice produced high levels of IL-10 after stimulation. These data suggest that HBZ alters immune system to suppressive state via TIGIT and IL-10. Importantly, TIGIT suppressed T-cell responses to another HTLV-1 virus protein, Tax, in vitro. Blocking of TIGIT and PD-1 slightly increased anti-Tax T-cell activity in some HAM/TSP patients. These results suggest that HBZ-induced TIGIT on HTLV-1 infected cells impairs T-cell responses to viral antigens. This study shows that HBZ-induced TIGIT plays a pivotal role in attenuating host immune responses and shaping a microenvironment favorable to HTLV-1.  相似文献   

20.
A high percentage of free-ranging pumas (Felis concolor) are infected with feline lentiviruses (puma lentivirus, feline immunodeficiency virus Pco [FIV-Pco], referred to here as PLV) without evidence of disease. PLV establishes productive infection in domestic cats following parenteral exposure but, in contrast to domestic cat FIV, it does not cause T-cell dysregulation. Here we report that cats exposed to PLV oro-nasally became infected yet rapidly cleared peripheral blood mononuclear cell (PBMC) proviral load in the absence of a correlative specific immune response. Two groups of four specific-pathogen-free cats were exposed to PLV via the mucosal (oro-nasal) or parenteral (i.v.) route. All animals were PBMC culture positive and PCR positive within 3 weeks postinfection and seroconverted without exhibiting clinical disease; however, three or four oro-nasally infected animals cleared circulating proviral DNA within 3 months. Antibody titers reached higher levels in animals that remained persistently infected. PLV antigen-induced proliferation was slightly greater in mucosally inoculated animals, but no differences were noted in cytotoxic T-lymphocyte responses or cytokine profiles between groups. The distribution of virus was predominantly gastrointestinal as opposed to lymphoid in all animals in which virus was detected at necropsy. Possible mechanisms for viral clearance include differences in viral fitness required for crossing mucosal surfaces, a threshold dose requirement for persistence, or an undetected sterilizing host immune response. This is the first report of control of a productive feline or primate lentivirus infection in postnatally exposed, seropositive animals. Mechanisms underlying this observation will provide clues to containment of immunodeficiency disease and could prompt reexamination of vaccine-induced immunity against human immunodeficiency virus and other lentiviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号