首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa is a frequent cause of acute infections. The primary virulence factor that has been linked to clinical disease is the type III secretion system, a molecular syringe that delivers effector proteins directly into host cells. Despite the importance of type III secretion in dictating clinical outcomes and promoting disease in animal models of infections, clinical isolates often do not express the type III secretion system in vitro. Here we screened 81 clinical P. aeruginosa isolates for secretion of type III secretion system substrates by western blot. Non-expressing strains were also subjected to a functional test assaying the ability to intoxicate epithelial cells in vitro, and to survive and cause disease in a murine model of corneal infection. 26 of 81 clinical isolates were found to be type III secretion negative by western blot. 17 of these 26 non-expressing strains were tested for their ability to cause epithelial cell rounding. Of these, three isolates caused epithelial cell rounding in a type III secretion system dependent manner, and one strain was cytotoxic in a T3SS-independent manner. Five T3SS-negative isolates were also tested for their ability to cause disease in a murine model of corneal infection. Of these isolates, two strains caused severe corneal disease in a T3SS-independent manner. Interestingly, one of these strains caused significant disease (inflammation) despite being cleared. Our data therefore show that P. aeruginosa clinical isolates can cause disease in a T3SS-independent manner, demonstrating the existence of novel modifiers of clinical disease.  相似文献   

2.
In order to assess the health risk associated with a given source of fecal contamination using bacterial source tracking (BST), it is important to know the occurrence of potential pathogens as a function of host. Escherichia coli isolates (n = 593) from the feces of diverse animals were screened for various virulence genes: stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae and EAF (enteropathogenic E. coli [EPEC]), STh, STp, and LT (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). Eleven hosts were positive for only the eae (10.11%) gene, representing atypical EPEC, while two hosts were positive for both eae and EAF (1.3%), representing typical EPEC. stx1, stx2, or both stx1 and stx2 were present in 1 (0.1%,) 10 (5.56%), and 2 (1.51%) hosts, respectively, and confirmed as non-O157 by using a E. coli O157 rfb (rfbO157) TaqMan assay. STh and STp were carried by 2 hosts (2.33%) and 1 host (0.33%), respectively, while none of the hosts were positive for LT and ipaH. The repetitive element palindromic PCR (rep-PCR) fingerprint analysis identified 221 unique fingerprints with a Shannon diversity index of 2.67. Multivariate analysis of variance revealed that majority of the isolates clustered according to the year of sampling. The higher prevalence of atypical EPEC and non-O157 STEC observed in different animal hosts indicates that they can be a reservoir of these pathogens with the potential to contaminate surface water and impact human health. Therefore, we suggest that E. coli from these sources must be included while constructing known source fingerprint libraries for tracking purposes. However, the observed genetic diversity and temporal variation need to be considered since these factors can influence the accuracy of BST results.  相似文献   

3.
The genetic diversity of Vibrio vulnificus isolates from clinical and environmental sources originating from the Baltic Sea region was evaluated by multilocus sequence typing (MLST), and possible relationships between MLST clusters, potential genotypic and phenotypic traits associated with pathogenicity, and source of isolation were investigated. The studied traits included genotyping of polymorphic loci (16S rRNA, vcg, and pilF), presence/absence of potential virulence genes, including nanA, nab, and genes of pathogenicity regions, metabolic features, hemolytic activity, resistance to human serum, and cytotoxicity to human intestinal cells. MLST generated 35 (27 new) sequence types and divided the 53 isolates (including four reference strains) into two main clusters, with cluster I containing biotype 1 and 2 isolates of mainly environmental origin and cluster II containing biotype 1 isolates of mainly clinical origin. Cluster II isolates were further subdivided into two branches. Branch IIB included isolates from recent cases of wound infections that were acquired at the German Baltic Sea coastline between 2010 and 2011 and isolates from seawater samples of the same regions isolated between 1994 and 2010. Comparing the MLST data with the results of genotyping and phenotyping showed that strains of MLST cluster II possess a number of additional pathogenicity-associated traits compared to cluster I strains. Rapid microbiological methods such as matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry combined with typing of selected virulence-associated traits (e.g., serum resistance, mannitol fermentation, nanA, and pathogenicity region XII) could be used for risk assessment purposes regarding V. vulnificus strains isolated from the Baltic Sea region.  相似文献   

4.
Members of the genus Aeromonas are ubiquitous in nature and have increasingly been implicated in numerous diseases of humans and other animal taxa. Although some species of aeromonads are human pathogens, their presence, density, and relative abundance are rarely considered in assessing water quality. The objectives of this study were to identify Aeromonas species within Lake Erie, determine their antibiotic resistance patterns, and assess their potential pathogenicity. Aeromonas strains were isolated from Lake Erie water by use of Aeromonas selective agar with and without tetracycline and ciprofloxacin. All isolates were analyzed for hemolytic ability and cytotoxicity against human epithelial cells and were identified to the species level by using 16S rRNA gene restriction fragment length polymorphisms and phylogenetic analysis based on gyrB gene sequences. A molecular virulence profile was identified for each isolate, using multiplex PCR analysis of six virulence genes. We demonstrated that Aeromonas comprised 16% of all culturable bacteria from Lake Erie. Among 119 Aeromonas isolates, six species were identified, though only two species (Aeromonas hydrophila and A. veronii) predominated among tetracycline- and ciprofloxacin-resistant isolates. Additionally, both of these species demonstrated pathogenic phenotypes in vitro. Virulence gene profiles demonstrated a high prevalence of aerolysin and serine protease genes among A. hydrophila and A. veronii isolates, a genetic profile which corresponded with pathogenic phenotypes. Together, our findings demonstrate increased antibiotic resistance among potentially pathogenic strains of aeromonads, illustrating an emerging potential health concern.  相似文献   

5.
A total of 227 isolates of Aeromonas obtained from different geographical locations in the United States and different parts of the world, including 28 reference strains, were analyzed to determine the presence of various virulence factors. These isolates were also fingerprinted using biochemical identification and pulse-field gel electrophoresis (PFGE). Of these 227 isolates, 199 that were collected from water and clinical samples belonged to three major groups or complexes, namely, the A. hydrophila group, the A. caviae-A. media group, and the A. veronii-A. sobria group, based on biochemical profiles, and they had various pulsotypes. When virulence factor activities were examined, Aeromonas isolates obtained from clinical sources had higher cytotoxic activities than isolates obtained from water sources for all three Aeromonas species groups. Likewise, the production of quorum-sensing signaling molecules, such as N-acyl homoserine lactone, was greater in clinical isolates than in isolates from water for the A. caviae-A. media and A. hydrophila groups. Based on colony blot DNA hybridization, the heat-labile cytotonic enterotoxin gene and the DNA adenosine methyltransferase gene were more prevalent in clinical isolates than in water isolates for all three Aeromonas groups. Using colony blot DNA hybridization and PFGE, we obtained three sets of water and clinical isolates that had the same virulence signature and had indistinguishable PFGE patterns. In addition, all of these isolates belonged to the A. caviae-A. media group. The findings of the present study provide the first suggestive evidence of successful colonization and infection by particular strains of certain Aeromonas species after transmission from water to humans.Aeromonas species cause both intestinal and extraintestinal infections (25, 33, 78), and the latter include septicemia, cellulitis, wound infections, urinary tract infections, hepatobiliary tract infections, soft tissue infections, and, occasionally, meningitis and peritonitis (25, 30, 78). In immunocompromised children, these pathogens can cause even more severe forms of infections, such as hemolytic-uremic syndrome (HUS) and necrotizing fasciitis (3, 23), although detailed studies are needed to establish such associations. Worldwide, the rate of isolation of Aeromonas from diarrheic stools has been reported to be as high as 10.8%, compared to 2.1% for healthy controls (25, 37, 78). An increased rate of isolation of Aeromonas species was reported in flood water samples during Hurricane Katrina in New Orleans (58), and skin and soft tissue infections caused by Aeromonas species were among the most common infections in the survivors of the 2004 tsunami in southern Thailand (28). In particular, Aeromonas salmonicida causes fish infections that result in huge economical losses in the fishing industry (6, 22). The ability of aeromonads, as well as other bacteria, to survive in chlorinated water when they are in biofilms and their resistance to multiple antibiotics are major public health concerns (46).Aeromonas-related gastroenteritis remains somewhat controversial (24, 36). There have been a number of well-described cases and a few documented outbreaks, but whether all aeromonad fecal isolates from symptomatic persons are the actual causes of diarrheal disease is still questionable. One theory for this conundrum was posed in 2000 by two of us, who suggested that only specific subsets of Aeromonas strains within and between species are actually pathogenic for humans (38). This highlights the importance of developing accurate biotyping, molecular fingerprinting, and virulence factor analysis methods for differentiating environmental and clinical aeromonads from one another and for comparing them (38).Of the 19 currently recognized Aeromonas species, A. hydrophila, A. caviae, and A. veronii biovar sobria are the most common species known to cause the majority of human infections, and they account for more than 85% of all clinical isolates (34). The pathogenesis of Aeromonas infections is multifactorial, as aeromonads produce a wide variety of virulence factors, including hemolysins, cytotonic and cytotoxic enterotoxins, proteases, lipases, leucocidins, endotoxin, adhesions, and an S layer, that act in concert to cause disease in the host (12-14, 50, 51). The cytotoxic enterotoxin Act, which has some similarities to aerolysin (31), is one of the most significant virulence factors in diarrheal isolate SSU of A. hydrophila and was first characterized in our laboratory (12). Act is secreted by the type II secretion system (T2SS) and has hemolytic, cytotoxic, and enterotoxic activities (12). In addition, our laboratory recently sequenced and characterized two other secretion systems, T3SS and T6SS, that were found to contribute to the virulence of A. hydrophila SSU (66, 67, 72). We recently characterized an effector of the T3SS, which was designated AexU, and found that it was associated with ADP ribosylation of host cell proteins, a rounded phenotype in HeLa cells, inhibition of phagocytosis, induction of apoptosis, and mouse mortality (66, 67). In recent studies, we also investigated the role of two T6SS-associated effectors, the valine-glycine repeat G (VgrG) family of proteins and hemolysin-coregulated protein (Hcp), in the virulence of A. hydrophila (71, 72). We demonstrated that VgrG1 of A. hydrophila had actin-ADP ribosylation activity that induced host cell cytotoxicity (71). Based on the model for T6SS, the VgrG1 protein must assemble with the highly homologous VgrG2 and VgrG3 proteins to form a cell-puncturing device to deliver effector proteins into the host cells (59). We also obtained evidence that expression of the hcp gene in HeLa cells led to their apoptosis, and animals immunized with recombinant Hcp were protected from subsequent challenge with a lethal dose of wild-type A. hydrophila SSU (72).In addition, cytotonic enterotoxins (e.g., Alt [heat labile] and Ast [heat stable]) were identified in a diarrheal A. hydrophila SSU isolate (14, 63) that induced fluid secretion in the ligated small intestinal loops of animals (47). More recently, we identified some additional virulence factor-encoding and regulatory genes, such as the enolase, hlyA (hemolysin), gidA (glucose-inhibited division A), vacB (virulence-associated protein B), dam (DNA adenine methyltransferase), and tagA (ToxR-regulated lipoprotein) genes, which modulated the virulence of A. hydrophila SSU (19-21, 57, 62, 64). The production of such a wide array of virulence factors by Aeromonas species is indicative of their potential to cause severe diseases in humans. These virulence factor-encoding genes might be differentially expressed in Aeromonas species depending on the environmental conditions, such as water or the human host.A cell-to-cell signaling system, known as quorum sensing (QS), might play an important role in sensing physiological conditions and helping bacteria express the virulence genes at an appropriate time under the appropriate conditions. Thus far, at least three QS circuits have been identified in Gram-negative bacteria, and they were designated LuxRI (autoinducer 1 [AI-1]), LuxS (AI-2), and AI-3 (epinephrine/norepinephrine). All of these QS systems were detected in our SSU clinical strain of A. hydrophila, and we recently demonstrated that N-acyl homoserine lactone (AHL) (AI-1) and AI-2-mediated QS controlled the virulence of A. hydrophila SSU (40, 43). Further, we observed decreased production of N-acyl homoserine lactones when we deleted two major virulence factor-encoding genes, the act gene and the gene encoding an outer membrane protein (aopB), an important component of the T3SS (65), from A. hydrophila SSU. Likewise, we observed that N-acyl homoserine lactone production was also modulated by regulatory genes, such as dam and gidA, in A. hydrophila SSU (18). Thus, differential expression of genes might also be an important factor in the pathogenesis of Aeromonas species.The presence of any virulence gene in strains of Aeromonas isolated from water should be carefully scrutinized, as such genes could be expressed better in a human host, which could lead to devastating outcomes. In addition, it is possible that in the environment certain Aeromonas clones may predominate and cause human diseases more frequently than other clones. Thus, it is important to determine the clonal variation of a range of Aeromonas species isolated from various sources and identify predominant clones by a polyphasic approach that includes biochemical phenotyping, virulence marker detection, and molecular fingerprinting techniques.In the present study, we compared 199 Aeromonas isolates, 146 of which were from water sources and 53 of which were from human patients with diarrhea in the Unites States. In addition, 28 reference and classical strains that were obtained from various culture collections and/or were isolated from specimens obtained in diverse geographical areas of the world, including water and clinical specimens, were also characterized. All isolates were biochemically identified to the phenospecies group level, examined for the presence of a set of 11 virulence factors by using DNA colony blot hybridization, and fingerprinted by using pulsed-field gel electrophoresis (PFGE). Some of the virulence factors selected, including T6SS effectors, were also examined by using functional assays. Our data provide the first suggestive evidence of water-to-human transmission, i.e., of successful colonization and infection by particular strains of certain Aeromonas species.  相似文献   

6.
Bacteria were isolated from soil and crown gall tumors by selection in minimal medium with an opine, such as succinamopine or mannopine, as the sole carbon source. The isolates were characterized for the pattern of opine utilization and identified. They were classified as mannityl opine or imino diacid utilizers and exhibited specificity of utilization similar to that described previously for Agrobacterium species. A minority of isolates were gram negative and were identified as Agrobacterium or Pseudomonas species; most were gram positive and belonged to the coryneform group. These results indicate that any specific effect of opines on the ecology of Agrobacterium tumefaciens is modulated by activities of other types of soil- and plant-associated bacteria.  相似文献   

7.
Transmission of group B Streptococcus (GBS) from mothers to neonates during childbirth is a leading cause of neonatal sepsis and meningitis. Although subtyping tools have identified specific GBS phylogenetic lineages that are important in neonatal disease, little is known about the genetic diversity of these lineages or the roles that recombination and selection play in the generation of emergent genotypes. Here, we examined genetic variation, selection, and recombination in seven multilocus sequence typing (MLST) loci from 94 invasive, colonizing, and bovine strains representing 38 GBS sequence types and performed DNA sequencing and PCR-based restriction fragment length polymorphism analysis of several putative virulence genes to identify gene content differences between genotypes. Despite the low level of diversity in the MLST loci, a neighbor net analysis revealed a variable range of genetic exchange among the seven clonal complexes (CCs) identified, suggesting that recombination is partly responsible for the diversity observed between genotypes. Recombination is also important for several virulence genes, as some gene alleles had evidence for lateral gene exchange across divergent genotypes. The CC-17 lineage, which is associated with neonatal disease, is relatively homogeneous and therefore appears to have diverged independently with an exclusive set of virulence characteristics. These data suggest that different GBS genetic backgrounds have distinct virulence gene profiles that may be important for disease pathogenesis. Such profiles could be used as markers for the rapid detection of strains with an increased propensity to cause neonatal disease and may be considered useful vaccine targets.Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia, and meningitis (51) and causes infections in pregnant women, nonpregnant adults, and the elderly with underlying medical conditions. Maternal GBS colonization is a main risk factor for neonatal disease, and roughly 20 to 40% of pregnant women are colonized (14, 23). Colonization rates of up to 31% and 34% have been documented in young men (4) and nonpregnant women (4, 42), respectively, whereas a rate of 22% has been observed in individuals over 65 years of age (18). GBS has also been identified as the cause of bovine mastitis in up to 45% of symptomatic bovines (30). Nine distinct polysaccharide capsule types (serotypes) are known, and the serotype distribution varies by population.The genetic diversity of GBS populations has been studied using a variety of different methods, including restriction fragment length polymorphism (RFLP) (24), ribotyping (5, 25), pulsed-field gel electrophoresis (49), multilocus enzyme electrophoresis (MLEE) (45), random amplification of polymorphic DNA (36), restriction digestion pattern (RDP) typing (53), and multilocus sequence typing (MLST) (28). By utilizing methods that focus on conserved genetic changes within GBS strains, virulent GBS clones that have diversified genetically can be identified. Both MLEE and MLST can distinguish the major GBS serotype III clones associated with neonatal invasive disease as sequence type 17 (ST-17) in the MLST system (28, 29, 38) or electrophoretic type 1 in the MLEE system (45). This clone is also evident in the RDP system as RDP-III (53).A recent study of 75 GBS strains representing different sources and STs reported that the ST-17 lineage is relatively homogeneous and contains a unique set of surface proteins (9). Homogeneity within a GBS lineage that is significantly associated with neonatal disease is likely important for disease pathogenesis, though few studies have been conducted to identify specific differences in virulence characteristics between lineages. Similarly, the roles of selection and recombination in the generation of STs, as well as known virulence genes, have only recently been explored and require further investigation (9a). Here, we assess the genomic diversity of GBS strains representing a variety of common clonal genotypes, examine evidence for selection and recombination, and evaluate the extent of DNA polymorphism and allelic variation in several putative virulence genes.  相似文献   

8.
Diversity was examined within a group of 79 isolates of Bradyrhizobium japonicum reactive to fluorescent antibodies (FAs) prepared against B. japonicum USDA 123. Analyses were by means of cross-adsorbed FAs, bacteriophage typing, and endonuclease restriction digest patterns. Serogroups 127 and 129 shared antigenic determinants with serogroup 123 but not with each other. Bacteriophage and DNA digest patterns reflected more common features between serogroups 123 and 127 than between 123 and 129. Serogroups 129 and 122 showed FA cross-reactivity. The term serocluster was proposed to reflect interrelationships observed among the serogroups.  相似文献   

9.
Genetic and Phenotypic Diversity among Botrytis cinerea Isolates in Iran   总被引:1,自引:0,他引:1  
Forty-four Botrytis cinerea isolates from different hosts and geographical regions were studied for colony morphology, mycelial growth rate at different temperatures, pathogenicity and molecular diversity. Botrytis cinerea isolates had temperature optima of 20–25°C and isolates showed variation in growth rate at different temperatures. Two morphological types were identified among tested isolates: mycelial and sclerotial. The pathogenicity of isolates was tested on grapevine leaves, and it was revealed that nine of 44 isolates were non-pathogenic and among them seven were of mycelial type. There was no correlation between mycelium growth rate and pathogenicity. Genetic diversity was investigated using nine arbitrary decaprimers. No relationship was found between molecular clusters and geographical region or sampling time; whereas isolates from the same plant host tended to cluster with each other. Seven of nine non-pathogenic isolates were separated from pathogenic ones.  相似文献   

10.
11.

Background

Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity.

Methodology/Principal Findings

A total of 233 E. coli isolates obtained from 175 tap water samples were analysed for susceptibility to 16 different antibiotics and for the presence of genes associated with virulence and antibiotic resistance. Nearly 36% (n = 84) of the isolates were multi-drug(≥3 classes of antibiotics) resistant (MDR) and 26% (n = 22) of these were positive for extended spectrum β-lactamase (ESBL). Of the 22 ESBL-producers, 20 were positive for bla CTX-M-15, 7 for bla OXA-1-group (all had bla OXA-47) and 2 for bla CMY-2. Quinolone resistance genes, qnrS and qnrB were detected in 6 and 2 isolates, respectively. Around 7% (n = 16) of the isolates carried virulence gene(s) characteristic of pathogenic E. coli; 11 of these contained lt and/or st and thus belonged to enterotoxigenic E. coli and 5 contained bfp and eae and thus belonged to enteropathogenic E. coli. All MDR isolates carried multiple plasmids (2 to 8) of varying sizes ranging from 1.2 to >120 MDa. Ampicillin and ceftriaxone resistance were co-transferred in conjugative plasmids of 70 to 100 MDa in size, while ampicillin, trimethoprim-sulfamethoxazole and tetracycline resistance were co-transferred in conjugative plasmids of 50 to 90 MDa. Pulsed-field gel electrophoresis analysis revealed diverse genetic fingerprints of pathogenic isolates.

Significance

Multi-drug resistant E. coli are wide spread in public water supply in Dhaka city, Bangladesh. Transmission of resistant bacteria and plasmids through supply water pose serious threats to public health in urban areas.  相似文献   

12.
A comparative study of 109 Aeromonas clinical isolates belonging to the 3 species most frequently isolated from patients with diarrhea in Mexico and Spain was performed to investigate the distribution of 3 prominent toxin genes and the gene encoding flagellin of lateral flagella; 4 well-established virulence factors in the genus Aeromonas. The aerolysin-hemolysin toxin genes were the most prevalent, being present in 89% of the total isolates. The ast toxin gene was conspicuously absent from the Aeromonas caviae and Aeromonas veronii groups but was present in 91% of the Aeromonas hydrophila isolates. Both the alt toxin gene and the lafA flagellin gene also had a low incidence in A. caviae and A. veronii. Differences in the prevalence of alt and lafA were observed between isolates from Mexico and Spain, confirming genus heterogeneity according to geographic location. Carriage of multiple toxin genes was primarily restricted to A. hydrophila isolates, suggesting that A. caviae and A. veronii isolates circulating in Mexico and Spain possess a limited array of virulence genes. Enterobacterial repetitive intergenetic consensus - polymerase chain reaction showed that the Aeromonas populations sampled lack dominant clones and were genetically heterogeneous, with A. caviae being the most diverse species. Further surveys of virulence determinants in genetically heterogeneous populations of Aeromonas isolates circulating worldwide are required to enhance the understanding of their capacity to cause disease.  相似文献   

13.
If the acquisition of virulence genes (VGs) for pathogenicity were not solely acquired through horizontal gene transfers of pathogenicity islands, transposons, and phages, then clonal clusters of enterotoxigenic Escherichia coli (ETEC) would contain few or even none of the VGs found in strains responsible for extraintestinal infections. To evaluate this possibility, 47 postweaning diarrhea (PWD) ETEC strains from different geographical origins and 158 commensal E. coli isolates from the gastrointestinal tracts of eight group-housed healthy pigs were screened for 36 extraintestinal and 18 enteric VGs using multiplex PCR assays. Of 36 extraintestinal VGs, only 8 were detected (fimH, traT, fyuA, hlyA, kpsMtII, k5, iha, and ompT) in the ETEC collection. Among these, hlyA (α-hemolysin) and iha (nonhemagglutinating adhesin) occurred significantly more frequently among the ETEC isolates than in the commensal isolates. Clustering analysis based on the VG profiles separated commensal and ETEC isolates and even differentiated serogroup O141 from O149. On the other hand, pulsed-field gel electrophoresis (PFGE) successfully clustered ETEC isolates according to both serotype and geographical origin. In contrast, the commensal isolates were heterogeneous with respect to both serotype and DNA fingerprint. This study has validated the use of VG profiling to examine pathogenic relationships between porcine ETEC isolates. The clonal relationships of these isolates can be further clarified by PFGE fingerprinting. The presence of extraintestinal VGs in porcine ETEC confirmed the hypothesis that individual virulence gene acquisitions can occur concurrently against a background of horizontal gene transfers of pathogenicity islands. Over time, this could enable specific clonotypes to respond to host selection pressure and to evolve into new strains with increased virulence.  相似文献   

14.
介绍造血干 / 祖细胞的体外培养和扩增取得的显著进展 :包括各种生物反应器的应用 ,三维培养系统的建立。扩增后的造血细胞在动物模型和临床上的应用已取得了初步成效。  相似文献   

15.
16.
17.
18.
19.
Vaginal Escherichia coli colonization is related to obstetric infections and the consequent development of infections in newborns. Ampicillin resistance among E. coli strains is increasing, which is the main choice for treating empirically many obstetric and neonatal infections. Vaginal E. coli strains are very similar to extraintestinal pathogenic E. coli with regards to the virulence factors and the belonging to phylogroup B2. We studied the antimicrobial resistance and the genetic virulence profile of 82 E. coli isolates from 638 vaginal samples and 63 isolated from endometrial aspirate, placental and amniotic fluid samples from pregnant women with obstetric infections. The prevalence of E. coli in the vaginal samples was 13%, which was significant among women with associated risk factors during pregnancy, especially premature preterm rupture of membranes (p<0.0001). Sixty-five percent of the strains were ampicillin-resistant. The E. coli isolates causing obstetric infections showed higher resistance levels than vaginal isolates, particularly for gentamicin (p = 0.001). The most prevalent virulence factor genes were those related to the iron uptake systems revealing clear targets for interventions. More than 50% of the isolates belonged to the virulent B2 group possessing the highest number of virulence factor genes. The ampicillin-resistant isolates had high number of virulence factors primarily related to pathogenicity islands, and the remarkable gentamicin resistance in E. coli isolates from women presenting obstetric infections, the choice of the most appropriate empiric treatment and clinical management of pregnant women and neonates should be carefully made. Taking into account host-susceptibility, the heterogeneity of E. coli due to evolution over time and the geographical area, characterization of E. coli isolates colonizing the vagina and causing obstetric infections in different regions may help to develop interventions and avoid the aetiological link between maternal carriage and obstetric and subsequent puerperal infections.  相似文献   

20.
A collection of Aeromonas strains of different origins were characterized for isolates expressing the O:34 somatic antigen. Of over 200 strains tested, approximately 14% belonged to serogroup O:34 with >85% of these strains identified as A. hydrophila regardless of source. A subset of 14 A. hydrophila O:34 strains were further analyzed for a number of structural and pathogenic features. Most O:34 strains expressed similar whole-cell protein profiles with regards to minor bands, but major band differences were noted in outer membrane proteins (OMPs) migrating between the 31K and 58K region. OMP profiles could be subdivided into three distinct patterns. All O:34 strains expressed a heterogeneous O polysaccharide side chain profile in their lipopolysaccharide (LPS), although some variation in the electrophoretic migration of lower and higher molecular weight LPS bands was noted. Polyclonal antisera raised against a 45-K OMP-associated protein of one O:34 strain (AH-195) reacted in immunoblot assays with a major 43 to 46-K OMP in 11 of 14 (79%) O:34 strains tested. Most O:34 strains (69%) were found to be pathogenic in mice with LD-50 values (i.p.) of <1.0 × 107 CFU; pathogenicity appeared to correlate best with elevated protease activity. The collective results suggest significant differences in both structural and pathogenic properties between some members of the O:34 group originating from human and nonhuman (fish, water) sources. Received: 14 December 1995 / Accepted: 22 January 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号