首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophilid flies breeding on ephemeral resource patches (e.g., decaying fruits) are assumed to transfer yeasts to their oviposition sites, presumably in order to positively affect offspring development. We tested this hypothesis with Drosophila subobscura Collin (Diptera: Drosophilidae) by manipulating their nutritional (yeast‐fed vs. non‐yeast‐fed) and reproductive status (mated vs. non‐mated). Flies were then released into vials containing decaying fruits (either sloes, crab apples, or Syrian plums). After a constant residence time in the vials, the flies were removed, 16 first‐instar larvae were transferred to the fruits and their survival probability to the adult stage was recorded. Whereas previous exposure of the larval substrate to yeast‐fed males and virgin females (yeast‐fed and non‐yeast‐fed) had no effect on survivorship, exposure to yeast‐fed and mated females that deposited eggs on the fruits (subsequently removed) led to a significant increase in the survival probability of the transferred larvae to the adult stage. Although the exact mechanism of yeast transmission remains to be determined, we suggest an active inoculation of the breeding substrates with yeast by ovipositing females. In agreement with previous studies, we found a negative effect of mould growth on larval survival, which, however, depended on the fruit type. We discuss various scenarios of yeast involvement in benefits to the insect larvae and suggest that insect–mould interactions should be examined in detail in order to better understand the behavioural and life‐history traits of insects that depend on ephemeral resources.  相似文献   

2.
Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in 'niche construction', facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop.  相似文献   

3.
《Fly》2013,7(4):312-319
Folic acid is a vitamin for probably all animals. When converted to folate forms, it is used in DNA synthesis and amino acid metabolism. Literature suggests insects must consume folates, folates do not affect others, is a toxin for some, and that a few insects synthesize it. It has been reported that Drosophila melanogaster does not consistently need dietary folate because it can synthesize it. This seems unlikely since animals generally lack this ability. More likely, folates thought to have been made by the fly came from microbial symbionts. We aimed to clarify how dietary folic acid affects fitness and development in fruit flies and whether flies may receive folates from microbial symbionts. We found larvae were more viable and developed faster with increasing dietary folic acid, with the surprising exception that larvae fed nearly-zero folic acid developed faster. Their body folate levels did not significantly differ from those that consumed up to 600 times more folic acid. However, these flies fed little folate only achieved normal body folate levels and development times when antibiotics were excluded from the diet. When flies consumed near-zero folates with antibiotics, their body folate levels decreased and development was prolonged. An assay for the endosymbiont Wolbachia in flies used to generate the experimental flies did not show presence of these bacteria. Our data suggest D. melanogaster can harbor unknown bacterial symbiont(s) that provide essential folates to their host when it is scarce in the diet, allowing the fruit fly to maintain growth and development.  相似文献   

4.
The earwig Euborellia annulipes (Lucas) (Dermaptera: Anisolabididae), a generalist predator, has been observed in fruits infested with fruit fly larvae, which are frequently parasitized by parasitoid wasps. Neither the capacity of earwigs to predate on fruit flies nor intraguild interactions between earwigs and fruit fly parasitoids have been investigated. Here, we studied in laboratory conditions the predation on the fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) by the earwig E. annulipes, and whether parasitism of fruit fly larvae by the parasitoid wasp Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) influences predation by the earwig. We evaluated the predation capacity, functional response and prey preference of E. annulipes for parasitized and non-parasitized fruit fly larvae in choice and no-choice tests. We found that earwigs prey on second- and third-instar larvae and pupae of C. capitata and consumed larger numbers of second-instar larvae, followed by third-instar larvae and pupae. Females prey on larger numbers of fruit flies than did males, regardless of the prey developmental stage, but both sexes exhibited a type II functional response. Interestingly, males killed but did not consume fruit fly larvae more than did females. In no-choice tests, earwig females consumed equal numbers of parasitized and non-parasitized fruit fly larvae. However, in choice tests, the females avoided feeding on parasitized larvae. Subsequent tests with hexane-washed parasitized and non-parasitized larvae showed that putative chemical markings left on fruit flies by parasitoids did not drive the earwig preference towards non-parasitized larvae. These findings suggest that E. annulipes is a potential biological control agent for C. capitata, and that, because the earwig avoids consuming larvae parasitized by D. longicaudata, a combination of the two natural enemies could have an additive effect on pest mortality.  相似文献   

5.
Stable core microbial communities have been described in numerous animal species and are commonly associated with fitness benefits for their hosts. Recent research, however, highlights examples of species whose microbiota are transient and environmentally derived. Here, we test the effect of diet on gut microbial community assembly in the spider Badumna longinqua. Using 16S rRNA gene amplicon sequencing combined with quantitative PCR, we analyzed diversity and abundance of the spider's gut microbes, and simultaneously characterized its prey communities using nuclear rRNA markers. We found a clear correlation between community similarity of the spider's insect prey and gut microbial DNA, suggesting that microbiome assembly is primarily diet‐driven. This assumption is supported by a feeding experiment, in which two types of prey—crickets and fruit flies—both substantially altered microbial diversity and community similarity between spiders, but did so in different ways. After cricket consumption, numerous cricket‐derived microbes appeared in the spider's gut, resulting in a rapid homogenization of microbial communities among spiders. In contrast, few prey‐associated bacteria were detected after consumption of fruit flies; instead, the microbial community was remodelled by environmentally sourced microbes, or abundance shifts of rare taxa in the spider's gut. The reshaping of the microbiota by both prey taxa mimicked a stable core microbiome in the spiders for several weeks post feeding. Our results suggest that the spider's gut microbiome undergoes pronounced temporal fluctuations, that its assembly is dictated by the consumed prey, and that different prey taxa may remodel the microbiota in drastically different ways.  相似文献   

6.
Insects are often associated with symbiotic micro‐organisms, which allow them to utilize nutritionally marginal diets. Adult fruit flies (Diptera: Tephritidae) associate with extracellular bacteria (Enterobacteriaceae) that inhabit their digestive tract. These flies obtain nutrients by foraging for plant exudates, honeydew and bird droppings scattered on leaves and fruit – a nutritional niche which offers ample amounts of carbohydrates, but low quantities of available nitrogen. We identified the bacteria resident in the gut of the olive fly (Bactrocera oleae) – a worldwide pest of olives and examined their contribution to nitrogen metabolism in the adult insect. By suppressing bacteria in the gut and monitoring female fecundity, we demonstrate that bacteria contribute essential amino acids and metabolize urea into an available nitrogen source for the fly, thus significantly elevating egg production. In an ecological context, bacteria were found to be beneficial to females subsisting on bird droppings, but not on honeydew – two natural food sources. We suggest that a main gut bacterium (Candidatus Erwinia dacicola) forms an inseparable, essential part of this fly's nutritional ecology. The evolution of this symbiosis has allowed adult flies to utilize food substrates which are low or imbalanced in assimilable nitrogen and thereby to overcome the nitrogen limitations of their natural diet.  相似文献   

7.
BACKGROUND: Competition with filamentous fungi has been demonstrated to be an important cause of mortality for the vast group of insects that depend on ephemeral resources (e.g. fruit, dung, carrion). Recent data suggest that the well-known aggregation of Drosophila larvae across decaying fruit yields a competitive advantage over mould, by which the larvae achieve a higher survival probability in larger groups compared with smaller ones. Feeding and locomotor behaviour of larger larval groups is assumed to cause disruption of fungal hyphae, leading to suppression of fungal growth, which in turn improves the chances of larval survival to the adult stage. Given the relationship between larval density, mould suppression and larval survival, the present study has tested whether fungal-infected food patches elicit communal foraging behaviour on mould-infected sites by which larvae might hamper mould growth more efficiently. RESULTS: Based on laboratory experiments in which Drosophila larvae were offered the choice between fungal-infected and uninfected food patches, larvae significantly aggregated on patches containing young fungal colonies. Grouping behaviour was also visible when larvae were offered only fungal-infected or only uninfected patches; however, larval aggregation was less strong under these conditions than in a heterogeneous environment (infected and uninfected patches). CONCLUSION: Because filamentous fungi can be deadly competitors for insect larvae on ephemeral resources, social attraction of Drosophila larvae to fungal-infected sites leading to suppression of mould growth may reflect an adaptive behavioural response that increases insect larval fitness and can thus be discussed as an anti-competitor behaviour. These observations support the hypothesis that adverse environmental conditions operate in favour of social behaviour. In a search for the underlying mechanisms of communal behaviour in Drosophila, this study highlights the necessity of investigating the role of inter-kingdom competition as a potential driving force in the evolution of spatial behaviour in insects.  相似文献   

8.
While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions.  相似文献   

9.
Colcemid was fed to Drosophila melanogaster larvae throughout most of the larval period. Surviving individuals were then mated with untreated flies, and their progeny were examined for polyploid flies or flies resulting from X-chromosome nondisjunction. A total of 251 polyploid offspring was recovered from the experimental matings, none from the control. All of the polyploids were evidently triploids, and all but one were obtained from colcemid-fed females: males produced significantly lower frequencies of triploid offspring than females. The highest average frequency of triploid offspring obtained from any treatment group was 18%. Nonrandom distributions of triploid offspring were observed among females raised identically, indicating tht polyploidization occurs mitotically, rather than meiotically, giving rise to clones of tetraploid oogonia. 9 colcemid-fed females produced exclusively triploid offspring. Colcemid also caused a significant increase in X-chromosome nondisjunction in females, though the frequencies of such offspring were at least several-fold lower than the frequencies of triploid offspring. Somatic polyploidy was apparently also indiced since patches of large cells were found on the wings of some flies raised on colcemid-containing food. Various teratological abnormalities were observed among the treated flies, including deformed or missing eyes and partially duplicated thoraxes.  相似文献   

10.
  • 1 Diachasmimorpha krausii is a braconid parasitoid of larval tephritid fruit flies, which feed cryptically within host fruit. At the ovipositor probing stage, the wasp cannot discriminate between hosts that are physiologically suitable or unsuitable for offspring development and must use other cues to locate suitable hosts.
  • 2 To identify the cues used by the parasitoid to find suitable hosts, we offered, to free flying wasps, different combinations of three fruit fly species (Bactrocera tryoni, Bactrocera cacuminata, Bactrocera cucumis), different life stages of those flies (adults and larvae) and different host plants (Solanum lycopersicon, Solanum mauritianum, Cucurbita pepo). In the laboratory, the wasp will readily oviposit into larvae of all three flies but successfully develops only in B. tryoni. Bactrocera tryoni commonly infests S. lycopersicon (tomato), rarely S. mauritianum (wild tobacco) but never C. pepo (zucchini). The latter two plant species are common hosts for B. cacuminata and B. cucumis, respectively.
  • 3 The parasitoid showed little or no response to uninfested plants of any of the test species. The presence of adult B. tryoni, however, increased parasitoid residency time on uninfested tomato.
  • 4 When the three fruit types were all infested with larvae, parasitoid response was strongest to tomato, regardless of whether the larvae were physiologically suitable or unsuitable for offspring development. By contrast, zucchini was rarely visited by the wasp, even when infested with B. tryoni larvae.
  • 5 Wild tobacco was infrequently visited when infested with B. cacuminata larvae but was more frequently visited, with greater parasitoid residency time and probing, when adult flies (either B. cacuminata or B. tryoni) were also present.
  • 6 We conclude that herbivore‐induced, nonspecific host fruit wound volatiles were the major cue used by foraging D. krausii. Although positive orientation to infested host plants is well known from previous studies on opiine braconids, the failure of the wasp to orientate to some plants even when infested with physiologically suitable larvae, and the secondary role played by adult fruit flies in wasp host searching, are newly‐identified mechanisms that may aid parasitoid host location in environments where both physiologically suitable and unsuitable hosts occur.
  相似文献   

11.
The adaptive benefits of maternal investment into individual offspring (inherited environmental effects) will be shaped by selection on mothers as well as their offspring, often across variable environments. We examined how a mother's nutritional environment interacted with her offspring's nutritional and social environment in Xiphophorus multilineatus, a live‐bearing fish. Fry from mothers reared on two different nutritional diets (HQ = high quality and LQ = low quality) were all reared on a LQ diet in addition to being split between two social treatments: exposed to a large adult male during development and not exposed. Mothers raised on a HQ diet produce offspring that were not only initially larger (at 14 days of age), but grew faster, and were larger at sexual maturity. Male offspring from mothers raised on both diets responded to the exposure to courter males by growing faster; however, the response of their sisters varied with mother's diet; females from HQ diet mothers reduced growth if exposed to a courter male, whereas females from LQ diet mothers increased growth. Therefore, we detected variation in maternal investment depending on female size and diet, and the effects of this variation on offspring were long‐lasting and sex specific. Our results support the maternal stress hypothesis, with selection on mothers to reduce investment in low‐quality environments. In addition, the interaction we detected between the mother's nutritional environment and the female offspring's social environment suggests that female offspring adopted different reproductive strategies depending on maternal investment.  相似文献   

12.
1. Theory predicts that mothers should adaptively adjust reproductive investment depending on current reserves and future reproductive opportunities. Females in better intrinsic state, or with more resources, should invest more in current reproduction than those with fewer resources. Across the lifespan, investment may increase as future reproductive opportunities decline, yet may also decline with reductions in intrinsic state. 2. Across many species, larger mothers produce larger offspring, but there is no theoretical consensus on why this is so. This pattern may be driven by variation in maternal state such as nutrition, yet few studies measure both size and nutritional state or attempt to tease apart confounding effects of size and age. 3. Viviparous tsetse flies (Glossina species) offer an excellent system to explore patterns of reproductive investment: females produce large, single offspring sequentially over the course of their relatively long life. Thus, per‐brood reproductive effort can be quantified by offspring size. 4. While most tsetse reproduction research has been conducted on laboratory colonies, maternal investment was investigated in this study using a unique field method where mothers were collected as they deposited larvae, allowing simultaneous mother‐offspring measurements under natural conditions. 5. It was found that larger mothers and those with a higher fat content produced larger offspring, and there was a trend for older mothers to produce slightly larger offspring. 6. The present results highlight the importance of measuring maternal nutritional state, rather than size alone, when considering maternal investment in offspring. Implications for understanding vector population dynamics are also discussed.  相似文献   

13.
Within animal groups, individuals can learn of a predator's approach by attending to the behaviour of others. This use of social information increases an individual's perceptual range, but can also lead to the propagation of false alarms. Error copying is especially likely in species that signal collectively, because the coordination required for collective displays relies heavily on social information. Recent evidence suggests that collective behaviour in animals is, in part, regulated by negative feedback. Negative feedback may reduce false alarms by collectively signalling animals, but this possibility has not yet been tested. We tested the hypothesis that negative feedback increases the accuracy of collective signalling by reducing the production of false alarms. In the treehopper Umbonia crassicornis, clustered offspring produce collective signals during predator attacks, advertising the predator's location to the defending mother. Mothers signal after evicting the predator, and we show that this maternal communication reduces false alarms by offspring. We suggest that maternal signals elevate offspring signalling thresholds. This is, to our knowledge, the first study to show that negative feedback can reduce false alarms by collectively behaving groups.  相似文献   

14.
We compared patterns of patch residence and oviposition ofRhagoletis pomonella (Diptera: Tephritidae) females that originated as larvae from hawthorn or apple trees and were released into patches of host trees containing hawthorn or apple fruit in an open field. There were no detectable differences between hawthorn-origin females in patches of hawthorns and apple-origin females in patches of apples in numbers of females observed on food, fruit or foliage or in numbers of eggs laid in fruit during the course of the 7-h experimental period. Apple-origin females in patches of hawthorns behaved similarly to hawthorn-origin females in patches of hawthorns. In contrast, hawthorn-origin females in patches of apples differed significantly from apple-origin females in patches of apples. The former were observed on fruit only 40% as often and laid only 20% as many eggs before departing a patch. Our findings support the hypothesis of G. L. Bush thatR. pomonella flies of hawthorn and apple origin represent distinct host races.  相似文献   

15.
比较新疆叶城两种主栽红枣—骏枣与灰枣的土壤养分、微生物多样性和枣营养品质之间的差异,分析土壤养分、微生物与枣营养品质之间的相关性,从土壤养分、微生物角度研究枣营养品质的影响因素。通过化学分析法测定叶城骏枣与灰枣土壤养分、枣营养品质指标,高通量测序分析土壤微生物多样性,将土壤养分和微生物优势门属微生物进行冗余分析,研究枣营养品质指标与土壤养分、微生物功能类群的相关性。结果显示,新疆叶城两种主栽红枣土壤的全氮、速效氮、有机质含量显著不同;细菌群落变化的主要原因是土壤TN(全氮)值,真菌群落变化的主要原因是土壤AN(速效氮)值。两种主栽红枣土壤微生物多样性显示,骏枣土壤微生物在细菌水平上具有更高的物种丰富性和多样性,薄壁杆菌属(Gracilibacillus)、芽胞杆菌目(Bacillales)等溶磷微生物、固氮微生物等功能土壤微生物相对丰度和占比较高,差异显著;枣营养品质,尤其是不可溶膳食纤维、Fe、K、Zn的含量差异明显。而不可溶膳食纤维、K、蔗糖含量与TP(全磷)、OM(有机质)存在显著负相关;Fe、Zn含量与薄壁杆菌属、芽胞杆菌目等九类功能微生物存在显著正相关;Mg、可溶性糖、可溶性...  相似文献   

16.
Poisoned protein baits comprise a recognized method for controlling tephritid fruit flies in the form of a ‘lure‐and‐kill’ technique. However, little is known about how a fly's internal protein and carbohydrate levels (i.e. nutritional status) might influence the efficacy of this control. In the present study, the relationships between the internal levels of protein (as measured by total body nitrogen) and carbohydrate (as measured by total body carbon) of the fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) are investigated, as well as its foraging behaviours in response to protein, fruit and cue‐lure (a male‐specific attractant) baits. Small cage behavioural experiments are conducted using flies from cultures of different nutritional status and wild flies sampled from the field during the fruiting cycle of a guava crop. For female flies, increasing total body nitrogen is correlated with decreased protein foraging and increased oviposition activity; increasing total body carbon levels generate the same behavioural changes except that the oviposition response is not significant. For males, there are no significant correlations between changes in total body nitrogen and total body carbon and protein or cue‐lure foraging. For wild flies from the guava orchard, almost all of them are sexually mature when entering the crop and, over the entire season, total body nitrogen and total body carbon levels are such that protein hunger is unlikely for most flies. The results infer strongly that the requirements of wild, sexually mature flies for protein are minimal and that flies can readily gain sufficient nutrients from wild sources for their physiological needs. The results offer a mechanistic explanation for the poor response of male and mature female fruit flies to protein bait spray.  相似文献   

17.
Females of many insects mate multiply but why they do so remains controversial. Here we investigated the effects of multiple matings on female reproductive success of a New Zealand seed bug, Nysius huttoni. We found little evidence for females to gain material (nutritional) benefits through multiple matings because the number of matings did not have significant effect on female fecundity. Females remated to the same males or different males produced similar number of viable offspring, suggesting that females do not obtain genetic benefit from remating in terms of offspring viability. With the increase of the number of matings, however, overall fertility rate significantly increased and daily fertility rate declined significantly slower over time. These results suggest that females remate for the replenishment of sperm. Five matings are sufficient for females to maximize their reproductive success, and additional matings appear to be superfluous. However, the females of this bug mate as many as 68 times if males and females are paired for lifetime. This can be explained by the convenience hypothesis, i.e., females remate superfluously to minimize the costs of harassment by promiscuous males.  相似文献   

18.
We examined the use of social information in fruitfly larvae, which represent an ideal model system owing to their robust learning abilities, small number of neurons and well-studied neurogenetics. Focal larvae showed attraction to the distinct odour emanating from food occupied by other larvae. In controlled learning experiments, focal larvae preferred novel odours previously paired with food occupied by other larvae over novel odours previously paired with unoccupied food. When we gave groups of larvae a choice between food patches differing in quality, more larvae aggregated on the higher-quality food, suggesting that attraction to and learning about cues associated with other larvae can be beneficial. Furthermore, larvae were more likely to find the best available food patch in trials when that food patch was occupied by other larvae than in trials when that food patch was unoccupied. Our data suggest, however, that the benefits from joining others may be at least partially offset by the fitness costs of increased competition, because larvae reared in isolation did as well as or better than larvae reared in groups on three key fitness parameters: developmental rate, survival rate and adult dry body mass. Our work establishes fruitfly larvae as a highly tractable model species for further research on the mechanisms that modulate behaviour and learning in a social context.  相似文献   

19.
Renewed debate over what benefits females might gain from producing extra‐pair offspring emphasizes the possibility that apparent differences in quality between within‐pair and extra‐pair offspring are confounded by greater maternal investment in extra‐pair offspring. Moreover, the attractiveness of a female''s social mate can also influence contributions of both partners to a reproductive attempt. Here, we explore the complexities involved in parental investment decisions in response to extra‐pair offspring and mate attractiveness with a focus on the female point of view. Adult zebra finches paired and reproduced in a colony setting. A male''s early‐life diet quality and his extra‐pair reproductive success were used as metrics of his mating attractiveness. Females paired with males that achieved extra‐pair success laid heavier eggs than other females and spent less time attending their nests than their mates or other females. Extra‐pair nestlings were fed more protein‐rich hen''s egg than within‐pair nestlings. Females producing extra‐pair offspring had more surviving sons than females producing only within‐pair offspring. Collectively, results show that females differentially allocate resources in response to offspring extra‐pair status and their social mate''s attractiveness. Females may also obtain fitness benefits through the production of extra‐pair offspring.  相似文献   

20.
Abstract Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae) larvae are capable of developing in one of many hosts that may vary greatly in quality. We hypothesized that they will respond to the larval environment in a manner beneficial to their subsequent reproductive performance. Accordingly, we investigated the effects of various larval diets (varying in the amount of protein and sugar they contain) on the size, development time, nutritional status and reproductive maturation (ovarian development and onset of sexual behaviour) of females and males. We found that flies which undergo larval development in artificial host fruit that contain sugar and protein ('protein-fed') were larger, developed faster and emerged with more nutritional reserves than flies that were protein-deprived as larvae. Protein-fed males, regardless of their size, became sexually active before males that developed in hosts with no protein. Protein-fed females produced more mature eggs than protein-deprived ones. Moreover, protein-fed females tended to copulate sooner than females that developed in hosts with no protein. In addition, regardless of female larval diet, females with more mature eggs tended to copulate sooner than females with less mature eggs. In light of these results, the importance of the larval environment for adult reproductive success is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号