首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeThis study evaluates the correlation between the susceptibility of the γ passing rate of IMRT plans to the multi-leaf collimator (MLC) position errors and a quantitative plan complexity metric.MethodsTwenty patients were selected for this study. For each patient, two IMRT plans were generated using sliding window and step-&-shoot techniques, respectively. Modulation complexity score (MCS) was calculated for all IMRT plans, and symmetric MLC leaf bank errors, ranging from 0.3 mm to 1 mm, were introduced. Original and modified plans were delivered using Varian’s Clinac iX. The obtained dose distribution using ArcCHECK was then compared with the TPS calculated dose distribution of the original plans. 3D gamma analysis was performed for each verification with passing criteria of 2%/2 mm. The γ passing rate decreasing gradient were calculated to evaluate relationship between variation of γ passing rate due to MLC errors and complexity.ResultsA linear regression analysis was applied between γ gradient and complexity, and the results showed a linear correlation (R2 = 0.81 and 0.82 for open and closed MLC error types, respectively) indicating the more complex plans are more susceptible to MLC leaf bank errors. Meanwhile, correlation of re-normalized γ passing rate and complexity for all errors scenarios also presented a strong correlation (r > 0.75).ConclusionThe statistics results revealed variation relationship of dosimetry robust of plans with various complexities to MLC errors. Our results also suggested that the observed susceptibility is independent of the delivery techniques.  相似文献   

2.
BackgroundThere is limited data on error detectability for step-and-shoot intensity modulated radiotherapy (sIMRT) plans, despite significant work on dynamic methods. However, sIMRT treatments have an ongoing role in clinical practice. This study aimed to evaluate variations in the sensitivity of three patient-specific quality assurance (QA) devices to systematic delivery errors in sIMRT plans.Materials and methodsFour clinical sIMRT plans (prostate and head and neck) were edited to introduce errors in: Multi-Leaf Collimator (MLC) position (increasing field size, leaf pairs offset (1–3 mm) in opposite directions; and field shift, all leaves offset (1–3 mm) in one direction); collimator rotation (1–3 degrees) and gantry rotation (0.5–2 degrees). The total dose for each plan was measured using an ArcCHECK diode array. Each field, excluding those with gantry offsets, was also measured using an Electronic Portal Imager and a MatriXX Evolution 2D ionisation chamber array. 132 plans (858 fields) were delivered, producing 572 measured dose distributions. Measured doses were compared to calculated doses for the no-error plan using Gamma analysis with 3%/3 mm, 3%/2 mm, and 2%/2 mm criteria (1716 analyses).ResultsGenerally, pass rates decreased with increasing errors and/or stricter gamma criteria. Pass rate variations with detector and plan type were also observed. For a 3%/3 mm gamma criteria, none of the devices could reliably detect 1 mm MLC position errors or 1 degree collimator rotation errors.ConclusionsThis work has highlighted the need to adapt QA based on treatment plan type and the need for detector specific assessment criteria to detect clinically significant errors.  相似文献   

3.
AimThe aim of this study is to verify the Prowess Panther jaws-only intensity modulated radiation therapy (JO-IMRT) treatment planning (TP) by comparing the TP dose distributions for head-and-neck (H&N) cancer with the ones simulated by Monte Carlo (MC).BackgroundTo date, dose distributions planned using JO-IMRT for H&N patients were found superior to the corresponding three-dimensional conformal radiotherapy (3D-CRT) plans. Dosimetry of the JO-IMRT plans were also experimentally verified using an ionization chamber, MapCHECK 2, and Octavius 4D and good agreements were shown.Materials and methodsDose distributions of 15 JO-IMRT plans of nasopharyngeal patients were recalculated using the EGSnrc Monte Carlo code. The clinical photon beams were simulated using the BEAMnrc. The absorbed dose to patients treated by fixed-field IMRT was computed using the DOSXYZnrc. The simulated dose distributions were then compared with the ones calculated by the Collapsed Cone Convolution (CCC) algorithm on the TPS, using the relative dose error comparison and the gamma index using global methods implemented in PTW-VeriSoft with 3%/3 mm, 2%/2 mm, 1%/1 mm criteria.ResultsThere is a good agreement between the MC and TPS dose. The average gamma passing rates were 93.3 ± 3.1%, 92.8 ± 3.2%, 92.4 ± 3.4% based on the 3%/3 mm, 2%/2 mm, 1%/1 mm criteria, respectively.ConclusionsAccording to the results, it is concluded that the CCC algorithm was adequate for most of the IMRT H&N cases where the target was not immediately adjacent to the critical structures.  相似文献   

4.

Aim

To evaluate the new Octavius 4D system for patient specific quality assurance and to study the correlation between plan complexity and gamma index analysis in patient specific quality assurance of VMAT using the Octavius 4D system.

Background

McNiven (2010) proposed a study to evaluate the utility of a complexity metric, the Modulation Complexity Score, to evaluate the relationship of the metric with deliverability in IMRT.

Materials and methods

Evaluation of the Octavius 4D system was carried out by gamma evaluation of user defined MLC created patterns and AAPM TG 119 benchmark plans. The relationship between plan complexity expressed as Modulation Complexity Score (MCS) and the gamma index analysis was established by a planar and volumetric gamma analysis of 106 clinically approved VMAT patient plans of different sites.

Results

Average volumetric 3D global gamma evaluation (3 mm/3%) results for the evaluation plans was 97.41% for 6 MV X-rays and 98.30% for 15 MV X-rays. Average MCS values for the head and neck, pelvic and thoracic plans were 0.2224, 0.3615 and 0.1874. Average volumetric 3D global gamma analysis (3 mm/3%) results for the head and neck, pelvic and thoracic VMAT plans were 95.45%, 97.51% and 96.98%, respectively. Out of 90 correlation analyses between the MCS and gamma passing rate, only 3 had the r value greater than 0.5.

Conclusions

The Octavius 4D system is a suitable device for patient specific pretreatment QA. Global and local gamma analysis results showed a weak correlation with the MCS.  相似文献   

5.
PurposeTo conduct patient-specific geometric and dosimetric quality assurance (QA) for the Dynamic WaveArc (DWA) using logfiles and ArcCHECK (Sun Nuclear Inc., Melbourne, FL, USA).MethodsTwenty DWA plans, 10 for pituitary adenoma and 10 for prostate cancer, were created using RayStation version 4.7 (RaySearch Laboratories, Stockholm, Sweden). Root mean square errors (RMSEs) between the actual and planned values in the logfiles were evaluated. Next, the dose distributions were reconstructed based on the logfiles. The differences between dose-volumetric parameters in the reconstructed plans and those in the original plans were calculated. Finally, dose distributions were assessed using ArcCHECK. In addition, the reconstructed dose distributions were compared with planned ones.ResultsThe means of RMSEs for the gantry, O-ring, MLC position, and MU for all plans were 0.2°, 0.1°, 0.1 mm, and 0.4 MU, respectively. Absolute means of the change in PTV D99% were 0.4 ± 0.4% and 0.1 ± 0.1% points between the original and reconstructed plans for pituitary adenoma and prostate cancer, respectively. The mean of the gamma passing rate (3%/3 mm) between the measured and planned dose distributions was 97.7%. In addition, that between the reconstructed and planned dose distributions was 99.6%.ConclusionsWe have demonstrated that the geometric accuracy and gamma passing rates were within AAPM 119 and 142 criteria during DWA. Dose differences in the dose-volumetric parameters using the logfile-based dose reconstruction method were also clinically acceptable in DWA.  相似文献   

6.
IntroductionPrevious literature has shown general trade-offs between plan complexity and resulting quality assurance (QA) outcomes. However, existing solutions for controlling this trade-off do not guarantee corresponding improvements in deliverability. Therefore, this work explored the feasibility of an optimization framework for directly maximizing predicted QA outcomes of plans without compromising the dosimetric quality of plans designed with an established knowledge-based planning (KBP) technique.Materials and MethodsA support vector machine (SVM) was developed – using a database of 500 previous VMAT plans – to predict gamma passing rates (GPRs; 3%/3mm percent dose-difference/distance-to-agreement with local normalization) based on selected complexity features. A heuristic, QA-based optimization (QAO) framework was devised by utilizing the SVM model to iteratively modify mechanical treatment features most commonly associated with suboptimal GPRs. Specifically, leaf gaps (LGs) <50 mm were widened by random amounts, which impacts all aperture-based complexity features. 13 prostate KBP-guided VMAT plans were optimized via QAO using user-specified maximum LG displacements before corresponding changes in predicted GPRs and dose were assessed.ResultsPredicted GPRs increased by an average of 1.14 ± 1.25% (p = 0.006) with QAO using a 3 mm maximum random LG displacement. There were small differences in dose, resulting in similarly small changes in tumor control probability (maximum increase = 0.05%) and normal tissue complication probabilities in the bladder, rectum, and femoral heads (maximum decrease = 0.2% in the rectum).ConclusionThis study explored the feasibility of QAO and warrants future investigations of further incorporating QA endpoints into plan optimization.  相似文献   

7.
PurposeMeasurement-based pre-treatment verification with phantoms frequently uses gamma analysis to assess acceptable delivery accuracy. This study evaluates the sensitivity of a commercial system to simulated machine errors for three different institutions’ Volumetric Modulated Arc Therapy (VMAT) planning approaches.MethodsVMAT plans were generated for ten patients at three institutions using each institution’s own protocol (manually-planned at institution 1; auto-planned at institutions 2 and 3). Errors in Multi-Leaf Collimator (MLC) field size (FS), MLC shift (S), and collimator angle (C) of −5, −2, −1, 1, 2 and 5 mm or degrees were introduced.Dose metric constraints discriminated which error magnitudes were considered unacceptable. The smallest magnitude error treatment plans deemed clinically unacceptable (typically for a 5% dose change) were delivered to the ArcCHECK for all institutions, and with a high-dose point ion chamber measurement in 2 institutions. Error detection for different gamma analysis criteria was compared.ResultsNot all deliberately introduced VMAT plan errors were detected using a typical 3D 3%/3 mm global gamma pass rate of 95%. Considering all institutions, gamma analysis was least sensitive to negative FS errors. The most sensitive was a 2%/2 mm global analysis for institution 1, whilst for institution 2 it was 3%/3 mm global analysis. The majority of errors (58/59 for institution 1, 54/60 for institution 3) were detected using ArcCHECK and ion chamber measurements combined.ConclusionsNot all clinically unacceptable errors are detected. Combining ion chamber measurements with gamma analysis improved sensitivity and is recommended. Optimum gamma settings varied across institutions.  相似文献   

8.
PurposeThe aim of this study is to investigate the effect of beam interruptions during delivery of volumetric modulated arc therapy (VMAT) on delivered dose distributions.MethodsTen prostate and ten head and neck (H&N) VMAT plans were retrospectively selected. Each VMAT plan was delivered using Trilogy™ without beam interruption, and with 4 and 8 intentional beam interruptions per a single arc. Two-dimensional global and local gamma evaluations with a diode array were performed with gamma criteria of 3%/3 mm, 2%/2 mm, 1%/2 mm and 2%/1 mm for each VMAT plan with and without beam interruptions. The VMAT plans were reconstructed with log files recorded during delivery and the dose-volumetric parameters were calculated for each reconstructed plan. The differences among dose-volumetric parameters due to the beam interruptions were calculated.ResultsThe changes in global gamma passing rates with various gamma criteria were less than 1.6% on average, while the changes in local gamma passing rates were less than 5.3% on average. The dose-volumetric parameter changes for the target volumes of prostate and H&N VMAT plans due to beam interruptions were less than 0.72% and 1.5% on average, respectively.ConclusionThe delivered dose distributions with up to 8 beam interruptions per an arc were clinically acceptable, showing minimal changes in both gamma passing rates and dose-volumetric parameters.  相似文献   

9.
PurposeThe aim of this study was to investigate the sensitivity of the gamma-index method according to various gamma criteria for volumetric modulated arc therapy (VMAT).MethodsTwenty head and neck (HN) and twenty prostate VMAT plans were retrospectively selected for this study. Both global and local 2D gamma evaluations were performed with criteria of 3%/3 mm, 2%/2 mm, 1%/2 mm and 2%/1 mm. In this study, the global and local gamma-index calculated the differences in doses relative to the maximum dose and the dose at the current measurement point, respectively. Using log files acquired during delivery, the differences in parameters at every control point between the VMAT plans and the log files were acquired. The differences in dose–volumetric parameters between reconstructed VMAT plans using the log files and the original VMAT plans were calculated. The Spearman's rank correlation coefficients (rs) were calculated between the passing rates and those differences.ResultsConsiderable correlations with statistical significances were observed between global 1%/2 mm, local 1%/2 mm and local 2%/1 mm and the MLC position differences (rs = −0.712, −0.628 and −0.581). The numbers of rs values with statistical significance between the passing rates and the changes in dose–volumetric parameters were largest in global 2%/2 mm (n = 16), global 2%/1 mm (n = 15) and local 2%/1 mm (n = 13) criteria.ConclusionLocal gamma-index method with 2%/1 mm generally showed higher sensitivity to detect deviations between a VMAT plan and the delivery of the VMAT plan.  相似文献   

10.
PurposeTo provide a practical protocol for absolute dose verification of stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) treatment plans, based on our clinical experience. It aims to be a concise summary of the main aspects to be considered when establishing an accurate film dosimetry system.MethodsProcedures for film calibration and conversion to dose are described for a dosimetry system composed of Gafchromic™ EBT-XD films and a flatbed document scanner. Factors that affect the film-scanner response are also reviewed and accounted for. The accuracy of the proposed methodology was assessed by taking a set of strips irradiated to known doses and its applicability is illustrated for ten SBRT/SRS treatment plans. The film response was converted to dose using red and triple channel dosimetry. The agreement between the planned and measured dose distributions was evaluated using global gamma analysis with criteria of 3%/2mm 10% threshold (TH), 2%/2mm 10% TH, and 2%/2mm 20% TH.ResultsThe differences between the expected and determined doses from the strips analysis were 0.9 ± 0.6% for the red channel and 1.1 ± 0.7% for the triple channel method. Regarding the SBRT/SRS plans verification, the mean gamma passing rates were 99.5 ± 1.0% vs 99.6 ± 1.0% (3%/2mm 10% TH), 96.9 ± 3.5% vs 99.1 ± 1.3% (2%/2mm 10% TH) and 98.4 ± 1.8% vs 98.8 ± 1.5% (2%/2mm 20% TH) for red and triple channel dosimetry, respectively.ConclusionsThe proposed protocol allows for accurate absolute dose verification of SBRT/SRS treatment plans, applying both single and triple channel methods. It may work as a guide for users that intend to implement a film dosimetry system.  相似文献   

11.
PurposeRobotic radiosurgery demands comprehensive delivery quality assurance (DQA), but guidelines for commissioning of the DQA method is missing. We investigated the stability and sensitivity of our film-based DQA method with various test scenarios and routine patient plans. We also investigated the applicability of tight distance-to-agreement (DTA) Gamma-Index criteria.Methods and materialWe used radiochromic films with multichannel film dosimetry and re-calibration and our analysis was performed in four steps: 1) Film-to-plan registration, 2) Standard Gamma-Index criteria evaluation (local-pixel-dose-difference ≤2%, distance-to-agreement ≤2 mm, pass-rate ≥90%), 3) Dose distribution shift until maximum pass-rate (Maxγ) was found (shift acceptance <1 mm), and 4) Final evaluation with tight DTA criteria (≤1 mm). Test scenarios consisted of purposefully introduced phantom misalignments, dose miscalibrations, and undelivered MU. Initial method evaluation was done on 30 clinical plans.ResultsOur method showed similar sensitivity compared to the standard End-2-End-Test and incorporated an estimate of global system offsets in the analysis. The simulated errors (phantom shifts, global robot misalignment, undelivered MU) were detected by our method while standard Gamma-Index criteria often did not reveal these deviations. Dose miscalibration was not detected by film alone, hence simultaneous ion-chamber measurement for film calibration is strongly recommended. 83% of the clinical patient plans were within our tight DTA tolerances.ConclusionOur presented methods provide additional measurements and quality references for film-based DQA enabling more sensitive error detection. We provided various test scenarios for commissioning of robotic radiosurgery DQA and demonstrated the necessity to use tight DTA criteria.  相似文献   

12.
PurposeTo evaluate the spatial accuracy of a frameless cone-beam computed tomography (CBCT)-guided cranial radiosurgery (SRS) using an end-to-end (E2E) phantom test methodology.Methods and materialsFive clinical SRS plans were mapped to an acrylic phantom containing a radiochromic film. The resulting phantom-based plans (E2E plans) were delivered four times. The phantom was setup on the treatment table with intentional misalignments, and CBCT-imaging was used to align it prior to E2E plan delivery. Comparisons (global gamma analysis) of the planned and delivered dose to the film were performed using a commercial triple-channel film dosimetry software. The necessary distance-to-agreement to achieve a 95% (DTA95) gamma passing rate for a fixed 3% dose difference provided an estimate of the spatial accuracy of CBCT-guided SRS. Systematic (∑) and random (σ) error components, as well as 95% confidence levels were derived for the DTA95 metric.ResultsThe overall systematic spatial accuracy averaged over all tests was 1.4 mm (SD: 0.2 mm), with a corresponding 95% confidence level of 1.8 mm. The systematic (Σ) and random (σ) spatial components of the accuracy derived from the E2E tests were 0.2 mm and 0.8 mm, respectively.ConclusionsThe E2E methodology used in this study allowed an estimation of the spatial accuracy of our CBCT-guided SRS procedure. Subsequently, a PTV margin of 2.0 mm is currently used in our department.  相似文献   

13.
AimTo study the sensitivity of three commercial dosimetric systems, Delta4, Multicube and Octavius4D, in detecting Volumetric Modulated Arc Therapy (VMAT) delivery errors.MethodsFourteen prostate and head and neck (H&N) VMAT plans were considered for this study. Three types of errors were introduced into the original plans: gantry angle independent and dependent MLC errors, and gantry angle dependent dose errors. The dose matrix measured by each detector system for the no-error and error introduced delivery were compared with the reference Treatment Planning System (TPS) calculated dose matrix for no-error plans using gamma (γ) analysis with 2%/2 mm tolerance criteria. The ability of the detector system in identifying the minimum error in each scenario was assessed by analysing the gamma pass rates of no error delivery and error delivery using a Wilcoxon signed-rank test. The relative sensitivity of the system was assessed by determining the slope of the gamma pass line for studied error magnitude in each error scenario.ResultsIn the gantry angle independent and dependent MLC error scenario the Delta4, Multicube and Octavius4D systems detected a minimum 2 mm error. In the gantry angle dependent dose error scenario all studied systems detected a minimum 3% and 2% error in prostate and H&N plans respectively. In the studied detector systems Multicube showed relatively less sensitivity to the errors in the majority of error scenarios.ConclusionThe studied systems identified the same magnitude of minimum errors in all considered error scenarios.  相似文献   

14.
AimTo evaluate calculation of treatment plans based on synthetic-CT (sCT) images generated from MRI.BackgroundBecause of better soft tissue contrast, MR images are used in addition to CT images for radiotherapy planning. However, registration of CT and MR images or repositioning between scanning sessions introduce systematic errors, hence suggestions for MRI-only therapy. The lack of information on electron density necessary for dose calculation leads to sCT (synthetic CT) generation. This work presents a comparison of dose distribution calculated on standard CT and sCT.Materials and methods10 prostate patients were included in this study. CT and MR images were collected for each patient and then water equivalent (WE) and MRCAT images were generated. The radiation plans were optimized on CT and then recalculated on MRCAT and WE data. 2D gamma analysis was also performed.ResultsThe mean differences in the majority of investigated DVH points were in order of 1% up to 10%, including both MRCAT and WE dose distributions. Mean gamma pass for acceptance criteria 1%/1 mm were greater than 82.5%. Prescribed doses for target volumes and acceptable doses for organs at risk were met in almost all cases.ConclusionsThe dose calculation accuracy on MRCAT was not significantly compromised in the majority of clinical relevant DVH points. The introduction of MRCAT into practise would eliminate systematic errors, increase patients’ comfort and reduce treatment expenses. Institutions interested in MRCAT commissioning must, however, consider changes to established workflow.  相似文献   

15.
PurposeTo study the sensitivity of an ArcCHECK dosimeter in detecting delivery errors during the delivery of Volumetric Modulated Arc Therapy (VMAT).MethodsThree types of errors in Multi Leaf Collimator (MLC) position and dose delivery were simulated separately in the delivery of five prostate and five head and neck (H&N) VMAT plans: (i) Gantry independent: a systematic shift in MLC position and variation in output to the whole arc; (ii) Gantry dependent: sag in MLC position and output variation as a function of gantry angle; (iii) Control point specific MLC and output errors introduced to only a specific number of Control Points (CP). The difference in local and global gamma (γ) pass rate between the no-error and error-simulated measurements with 2%/2 mm and 3%/3 mm tolerances was calculated to assess the sensitivity of ArcCHECK. The clinical impact of these errors was also calculated.ResultsArcCHECK was able to detect a minimum 3 mm MLC error and 3% output error for Gantry independent errors using either local or global gamma with 2%/2 mm tolerance. For the Gantry dependent error scenario a minimum 3 mm MLC error and 3% dose error was identifiable by ArcCHECK using either global or local gamma with 2%/2 mm tolerance. In errors introduced to specific CPs a MLC error of 10 mm and dose error of 100% introduced to 4CPs were detected by ArcCHECK.ConclusionArcCHECK used with either local or global gamma analysis and 2%/2 mm criteria can be confidently used in the clinic to detect errors above the stated error values.  相似文献   

16.
PurposeTo verify whether Icon automatic correction is robust in preserving plan quality.Materials/methodsAn end-to-end phantom was used to verify Icon’s correction accuracy qualitatively. For quantitative assessment, two plans, a composite- and a uniform-shot-only, were created for an elliptical- (E) and a sausage-shaped (S) lesion inside a PseudoPatient head phantom with a film insert. The phantom was irradiated in the planned and three other positions under each plan: 14° pitch (B); 14° rotation + 8° pitch (C); 95° rotation + 4-cm shift (D).ResultsIcon accurately corrects the locations of the shots. For the uniform-shot plans: all gamma index passing rates were >97%, and the differences between the planned and the delivery doses (minimum, maximum, and mean) were all ≤0.1 Gy. For the composite-shot plans, however, the dose differences increased as the phantom was shifted through positions B-D, with a gamma index passing rate of 61% for lesion-E in position D, and 92%, 79%, and 45% for lesion-S in positions B, C, and D, respectively.ConclusionsPlans using only uniform shots are more robust to deviations in treatment position. The tolerance for such deviations may be lower for plans using composite shots.  相似文献   

17.
PurposeDynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect.Methods16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5 mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated.ResultsThe change in PTV and organs at risk DVH parameters were 0.4–4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3 mm (per beam and composite plan) and 3%G/2 mm (composite plan) for the diode array phantom and 2%G/2 mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6.ConclusionsA DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3 mm per beam gamma setting.  相似文献   

18.
AimTo study the dosimetric impact of statistical uncertainty (SU) per plan on Monte Carlo (MC) calculation in Monaco? treatment planning system (TPS) during volumetric modulated arc therapy (VMAT) for three different clinical cases.BackgroundDuring MC calculation SU is an important factor to decide dose calculation accuracy and calculation time. It is necessary to evaluate optimal acceptance of SU for quality plan with reduced calculation time.Materials and methodsThree different clinical cases as the lung, larynx, and prostate treated using VMAT technique were chosen. Plans were generated with Monaco? V5.11 TPS with 2% statistical uncertainty. By keeping all other parameters constant, plans were recalculated by varying SU, 0.5%, 1%, 2%, 3%, 4%, and 5%. For plan evaluation, conformity index (CI), homogeneity index (HI), dose coverage to PTV, organ at risk (OAR) dose, normal tissue receiving dose ≥5 Gy and ≥10 Gy, integral dose (NTID), calculation time, gamma pass rate, calculation reproducibility and energy dependency were analyzed.ResultsCI and HI improve as SU increases from 0.5% to 5%. No significant dose difference was observed in dose coverage to PTV, OAR doses, normal tissue receiving dose ≥5 Gy and ≥10 Gy and NTID. Increase of SU showed decrease in calculation time, gamma pass rate and increase in PTV max dose. No dose difference was seen in calculation reproducibility and dependent on energy.ConclusionFor VMAT plans, SU can be accepted from 1% to 3% per plan with reduced calculation time without compromising plan quality and deliverability by accepting variations in point dose within the target.  相似文献   

19.
AimDeveloping and assessing the feasibility of using a three-dimensional (3D) printed patient-specific anthropomorphic pelvis phantom for dose calculation and verification for stereotactic ablative radiation therapy (SABR) with dose escalation to the dominant intraprostatic lesions.Material and methodsA 3D-printed pelvis phantom, including bone-mimicking material, was fabricated based on the computed tomography (CT) images of a prostate cancer patient. To compare the extent to which patient and phantom body and bones overlapped, the similarity Dice coefficient was calculated. Modular cylindrical inserts were created to encapsulate radiochromic films and ionization chamber for absolute dosimetry measurements at the location of prostate and at the boost region. Gamma analysis evaluation with 2%/2mm criteria was performed to compare treatment planning system calculations and measured dose when delivering a 10 flattening filter free (FFF) SABR plan and a 10FFF boost SABR plan.ResultsDice coefficients of 0.98 and 0.91 were measured for body and bones, respectively, demonstrating agreement between patient and phantom outlines. For the boost plans the gamma analysis yielded 97.0% of pixels passing 2%/2mm criteria and these results were supported by the chamber average dose difference of 0.47 ± 0.03%. These results were further improved when overriding the bone relative electron density: 97.3% for the 2%/2mm gamma analysis, and 0.05 ± 0.03% for the ionization chamber average dose difference.ConclusionsThe modular patient-specific 3D-printed pelvis phantom has proven to be a highly attractive and versatile tool to validate prostate SABR boost plans using multiple detectors.  相似文献   

20.
PurposeExisting phantom-less quality assurance (QA) platforms does not provide patient-specific QA for helical tomotherapy (HT). A new system, called TomoEQA, is presented to facilitate this using the leaf open time (LOT) of a binary multi-leaf collimator, as measured by an exit detector.MethodsTomoEQA was designed to provide measurement-based LOTs based on detector data and to generate a new digital imaging and communication in medicine (DICOM) dataset that includes the measured LOTs for use by secondary check platforms. To evaluate the system, 20 patient-specific QAs were performed using the program in Mobius3D software, and the results were compared to conventional phantom-based QA results.ResultsFrom our assessment, most of the differences between the planned and measured (or calculated) data, excluding one case, were within the acceptance criteria comparing with those of conventional QA. Regarding the gamma analysis, all results considered in this study were within the acceptance criteria. In addition, the developed system was performed for a failed case and showed approximately the same trends as the conventional approach.ConclusionsTomoEQA could perform patient-specific QAs of HT using Mobius3D and provide reliable patient-specific QAs results by evaluating point dose errors and 3D gamma passing rates. TomoEQA could also distinguish whether an intensity-modulated radiation therapy plan failed or not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号