首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J) mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.  相似文献   

2.
Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.  相似文献   

3.
Here we examine the expression pattern of HMGN1, a nucleosome binding protein that affects chromatin structure and activity, in the hair follicle and test whether loss of HMGN1 affects the development or cycling of the follicle. We find that at the onset of hair follicle development, HMGN1 protein is expressed in the epidermal placode and in aggregated dermal fibroblasts. In the adult hair follicle, HMGN1 is specifically expressed in the basal layer of epidermis, in the outer root sheath, in the hair bulb, but not in the inner root sheath and hair shaft. The expression pattern of HMGN1 is very similar to p63, suggesting a role for HMGN1 in the transiently amplifying cells. We also find HMGN1 expression in some, but not all hair follicle stem cells as detected by its colocalization with Nestin and with BrdU label-retaining cells. The appearance of the skin and hair follicle of Hmgn1?/? mice was indistinguishable from that of their Hmgn1+/+ littermates. We found that in the hair follicle the expression of HMGN2 is very similar to HMGN1 suggesting functional redundancy between these closely related HMGN variants.  相似文献   

4.
We screened for genes specifically expressed in the mesenchymes of developing hair follicles using representational differential analysis; one gene identified was MAEG, which encodes a protein consisting of five EGF-like repeats, a linker segment containing a cell-adhesive Arg-Gly-Asp (RGD) motif, and a MAM domain. Immunohistochemistry showed that MAEG protein was localized at the basement membrane of embryonic skin and developing hair follicles, while MAEG expression diminished at the tip of the hair bud. A recombinant MAEG fragment containing the RGD motif was active in mediating adhesion of keratinocytes to the substratum in an RGD-dependent manner. One of the adhesion receptors recognizing the RGD motif was found to be the alpha8beta1 integrin, the expression of which was detected in the placode close to MAEG-positive mesenchymal cells, but later became restricted to the tip of the developing hair bud. Given its localized expression at the basement membrane in developing hair follicles and the RGD-dependent cell-adhesive activity, MAEG may play a role as a mediator regulating epithelial-mesenchymal interaction through binding to RGD-binding integrins including alpha8beta1 during hair follicle development.  相似文献   

5.
6.
7.
8.
The type I keratin 17 (K17) shows a peculiar localization in human epithelial appendages including hair follicles, which undergo a growth cycle throughout adult life. Additionally K17 is induced, along with K6 and K16, early after acute injury to human skin. To gain further insights into its potential function(s), we cloned the mouse K17 gene and investigated its expression during skin development. Synthesis of K17 protein first occurs in a subset of epithelial cells within the single-layered, undifferentiated ectoderm of embryonic day 10.5 mouse fetuses. In the ensuing 48 h, K17-expressing cells give rise to placodes, the precursors of ectoderm-derived appendages (hair, glands, and tooth), and to periderm. During early development, there is a spatial correspondence in the distribution of K17 and that of lymphoid-enhancer factor (lef-1), a DNA-bending protein involved in inductive epithelial–mesenchymal interactions. We demonstrate that ectopic lef-1 expression induces K17 protein in the skin of adult transgenic mice. The pattern of K17 gene expression during development has direct implications for the morphogenesis of skin epithelia, and points to the existence of a molecular relationship between development and wound repair.  相似文献   

9.
Transmembrane channel-like protein isoform 1 (TMC1) is essential for the generation of mechano-electrical transducer currents in hair cells of the inner ear. TMC1 disruption causes hair cell degeneration and deafness in mice and humans. Although thought to be expressed at the cell surface in vivo, TMC1 remains in the endoplasmic reticulum when heterologously expressed in standard cell lines, precluding determination of its roles in mechanosensing and pore formation. Here, we report that the KCNQ1 Kv channel forms complexes with TMC1 and rescues its surface expression when coexpressed in Chinese Hamster Ovary cells. TMC1 rescue is specific for KCNQ1 within the KCNQ family, is prevented by a KCNQ1 trafficking-deficient mutation, and is influenced by KCNE β subunits and inhibition of KCNQ1 endocytosis. TMC1 lowers KCNQ1 and KCNQ1-KCNE1 K+ currents, and despite the surface expression, it does not detectably respond to mechanical stimulation or high salt. We conclude that TMC1 is not intrinsically mechano- or osmosensitive but has the capacity for cell surface expression, and requires partner protein(s) for surface expression and mechanosensitivity. We suggest that KCNQ1, expression of which is not thought to overlap with TMC1 in hair cells, is a proxy partner bearing structural elements or a sequence motif reminiscent of a true in vivo TMC1 hair cell partner. Discovery of the first reported strategy to rescue TMC1 surface expression should aid future studies of the TMC1 function and native partners.  相似文献   

10.
Molecular characterization of anion exchangers in the cochlea   总被引:2,自引:0,他引:2  
Anion exchange proteins (AE) in the inner ear have been the focus of attention for some time. They have been suggested to play a role as anion exchangers for the regulation of endolymphatic pH or as anion exchangers and anchor proteins for the maintenance of the shape and turgor of outer hair cells, and they also have been discussed as a candidate protein for motile hair cell responses that follow high-frequency stimulation. The existence of anion exchangers in hair cells and the specific isoforms which are expressed in hair cells and the organ of Corti is controversial. Using a polyclonal antibody to AE1 (AB1992, Chemicon), we immunoprecipitated a 100 kDa AE polypeptide in isolated outer hair cells which, due to its glycosylation, is comprised of AE2 than AE1 isoforms. We confirmed AE2 expression in outer hair cells with the help of subtype-specific monoclonal and polyclonal antibodies to AE, AE subtype-specific primers and AE subtype-specific cDNA and found glycosylated truncated as well as full-length AE2 isoforms. No AE1 or AE3 subtypes were noted in outer hair cells. In contrast, AE2 and AE3 but not AE1 subtypes were seen in supporting cells of the organ of Corti. Their expression preceded the development of cochlear function, coincident with the establishment of the endocochlear potential and the differentiation of supporting cells. While most developmental processes in the inner ear usually begin in the basal cochlear turn, the AE2 expression in outer hair cells (but not that of AE2 and AE3 in supporting cells) progressed from the apical to the basal cochlear turn, reminiscent of the maturation of frequency-dependency. Irrespective of their presumed individual role as either anion exchanger, anchor protein or motility protein, the differential expression and developmental profile of these proteins suggest a most important role of anion exchange proteins in the development of normal hearing. These findings may also provide novel insights into AE function in general.  相似文献   

11.
12.
Hes1 is a negative regulator of inner ear hair cell differentiation   总被引:13,自引:0,他引:13  
Hair cell fate determination in the inner ear has been shown to be controlled by specific genes. Recent loss-of-function and gain-of-function experiments have demonstrated that Math1, a mouse homolog of the Drosophila gene atonal, is essential for the production of hair cells. To identify genes that may interact with Math1 and inhibit hair cell differentiation, we have focused on Hes1, a mammalian hairy and enhancer of split homolog, which is a negative regulator of neurogenesis. We report here that targeted deletion of Hes1 leads to formation of supernumerary hair cells in the cochlea and utricle of the inner ear. RT-PCR analysis shows that Hes1 is expressed in inner ear during hair cell differentiation and its expression is maintained in adulthood. In situ hybridization with late embryonic inner ear tissue reveals that Hes1 is expressed in supporting cells, but not hair cells, of the vestibular sensory epithelium. In the cochlea, Hes1 is selectively expressed in the greater epithelial ridge and lesser epithelial ridge regions which are adjacent to inner and outer hair cells. Co-transfection experiments in postnatal rat explant cultures show that overexpression of Hes1 prevents hair cell differentiation induced by Math1. Therefore Hes1 can negatively regulate hair cell differentiation by antagonizing Math1. These results suggest that a balance between Math1 and negative regulators such as Hes1 is crucial for the production of an appropriate number of inner ear hair cells.  相似文献   

13.
Structure and expression of the ovine Hoxc-13 gene   总被引:7,自引:0,他引:7  
Sander GR  Powell BC 《Gene》2004,327(1):107-116
  相似文献   

14.
15.
The s-SHIP protein is a shorter isoform of the longer SHIP1 protein and lacks the N-terminal SH2 domain region contained in SHIP1. s-SHIP is expressed in ES cells and in enriched bone marrow stem cells, and may be controlled by a promoter within intron 5 of the ship1 gene. We therefore examined the potential specificity of promoter activity in ES cells of an intron 5/intron 6 ship1 genomic segment and its tissue specificity within transgenic mice expressing GFP from this promoter region. The results indicate that s-SHIP promoter activity is specific for ES cells in vitro and for known and presumptive stem/progenitor cells throughout embryo development of the transgenic mice. Specific GFP expression was observed in the blastocyst, primordial germ cells, thymus, arterioles, osteoblasts, and skin epidermis. The epidermis/epithelium is the progenitor for hair follicles, mammary tissue, and prostate. Interestingly, each of these latter tissues acquired a few GFP-positive cells in the course of their development from the epithelial layers, and these cells express marker proteins for stem/progenitor cells. These results identify potential stem cell populations, mark these cells for analyses in normal and cancer development, and implicate s-SHIP as an important protein in stem/progenitor cell function.  相似文献   

16.
WNT signaling in the control of hair growth and structure   总被引:22,自引:0,他引:22  
Characterization of the molecular pathways controlling differentiation and proliferation in mammalian hair follicles is central to our understanding of the regulation of normal hair growth, the basis of hereditary hair loss diseases, and the origin of follicle-based tumors. We demonstrate that the proto-oncogene Wnt3, which encodes a secreted paracrine signaling molecule, is expressed in developing and mature hair follicles and that its overexpression in transgenic mouse skin causes a short-hair phenotype due to altered differentiation of hair shaft precursor cells, and cyclical balding resulting from hair shaft structural defects and associated with an abnormal profile of protein expression in the hair shaft. A putative effector molecule for WNT3 signaling, the cytoplasmic protein Dishevelled 2 (DVL2), is normally present at high levels in a subset of cells in the outer root sheath and in precursor cells of the hair shaft cortex and cuticle which lie immediately adjacent to Wnt3-expressing cells. Overexpression of Dvl2 in the outer root sheath mimics the short-hair phenotype produced by overexpression of Wnt3, supporting the hypothesis that Wnt3 and Dvl2 have the potential to act in the same pathway in the regulation of hair growth. These experiments demonstrate a previously unrecognized role for WNT signaling in the control of hair growth and structure, as well as presenting the first example of a mammalian phenotype resulting from overexpression of a Dvl gene and providing an accessible in vivo system for analysis of mammalian WNT signaling pathways.  相似文献   

17.
Anosmin-1, encoded by the KAL-1 gene, is the protein defective in the X-linked form of Kallmann syndrome. This human developmental disorder is characterized by defects in cell migration and axon target selection. Anosmin-1 is an extracellular matrix protein that plays a role, in vitro, in processes such as cell adhesion, neurite outgrowth, axon guidance, and axon branching. The zebrafish possesses two orthologues of the KAL-1 gene: kal1a and kal1b, which encode anosmin-1a and anosmin-1b, respectively. Previous in situ hybridization studies have shown that kal1a and kal1b mRNAs are expressed in undetermined cells of the inner ear but not in neuromast cells. Using specific antibodies against anosmin-1a and anosmin-1b, we report here that both proteins are expressed in sensory hair cells of the inner ear cristae ampullaris and the lateral line neuromasts. Accumulation of these proteins was observed mainly at the level of the hair bundle and also at the cell membrane. In neuromast hair cells, immunogold scanning electronmicroscopy demonstrated that anosmin-1a and anosmin-1b were present at the surface of the stereociliary bundle. In addition, anosmin-1a, but not anosmin-1b, was detected on the track of the ampullary nerve. This is the first report of anosmin-1 expression in sensory hair cells of the inner ear and lateral line, and along the ampullary nerve track.  相似文献   

18.
19.
血管内皮生长因子(vascular endothelial growth factor, VEGF)是一种二聚体糖蛋白,能够诱导毛囊血管内皮细胞的增殖和迁移,调节毛囊周围毛细血管生成,进而影响毛囊的生长发育。已知cgVEGF164是绒山羊VEGF-A基因的一种主要剪接变体,但cgVEGF164基因是否具有调控毛囊生长发育的作用目前尚不清楚。为初步探究cgVEGF164基因对毛囊生长的影响及其机制,本研究通过原核显微注射制备cgVEGF164转基因过量表达小鼠。通过HE染色法比较转基因小鼠和非转基因对照小鼠毛囊的直径和密度,利用WesternBlot检测小鼠背部皮肤中信号蛋白ERK1/2、AKT1、LEF1的磷酸化水平。本研究成功获得5只阳性cg VEGF164转基因小鼠(雌雄比为4:1,阳性率8.5%);与非转基因对照小鼠相比,转基因小鼠毛囊直径增大、密度增加;经检测转基因小鼠中ERK1/2、AKT1、LEF1的磷酸化水平均上调。结果表明,cgVEGF164基因具有促进小鼠毛囊生长的作用,推测该功能可能与cgVEGF164影响ERK1/2、AKT1和LEF1等信号蛋白的磷酸化有关。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号