首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
PurposeTo investigate the sensitivity of Monte Carlo (MC) calculated lung dose distributions to lung tissue characterization in external beam radiotherapy of breast cancer under Deep Inspiration Breath Hold (DIBH).MethodsEGSnrc based MC software was employed. Mean lung densities for one hundred patients were analysed. CT number frequency and clinical dose distributions were calculated for 15 patients with mean lung density below 0.14 g/cm3. Lung volume with a pre-defined CT numbers was also considered. Lung tissue was characterized by applying different CT calibrations in the low-density region and air-lung tissue thresholds. Dose impact was estimated by Dose Volume Histogram (DVH) parameters.ResultsMean lung densities below 0.14 g/cm3 were found in 10% of the patients. CT numbers below −960 HU dominated the CT frequency distributions with a high rate of CT numbers at −990 HU. Mass density conversion approach influenced the DVH shape. V4Gy and V8Gy varied by 7% and 5% for the selected patients and by 9% and 3.5% for the pre-defined lung volume. V16Gy and V20Gy, were within 2.5%. Regions above 20 Gy were affected. Variations in air- lung tissue differentiation resulted in DVH parameters within 1%. Threshold at −990 HU was confirmed by the CT number frequency distributions.ConclusionsLung dose distributions were more sensitive to variations in the CT calibration curve below lung (inhale) density than to air-lung tissue differentiation. Low dose regions were mostly affected. The dosimetry effects were found to be potentially important to 10% of the patients treated under DIBH.  相似文献   

2.
目的:研究胸部肿瘤患者放疗中肺功能指标的变化并分析放射性肺炎的影响因素。方法:将2018年3月至2019年3月于我院接受放疗的胸部肿瘤患者100例记为观察对象,按照是否发生放射性肺炎分为肺炎组28例与无肺炎组72例。分别比较两组的临床资料、放疗前后肺功能及放疗参数,并采用多因素Logistic回归分析放射性肺炎的影响因素。结果:放疗后两组第1秒用力呼气容积(FEV_1)、FEV_1/用力肺活量(FVC)、一氧化碳弥散量(DLCO)均高于放疗前,且肺炎组放疗前、后FEV_1、FEV_1/FVC、DLCO均低于无肺炎组(均P0.05)。两组年龄、肿瘤类型、化疗史、美国东部肿瘤合作组(ECOG)评分、放疗靶区比较差异有统计学意义(均P0.05)。肺炎组计划靶区(PTV)、受到一定剂量以上照射的肺体积占全肺总体积的百分数(V_(dose))、平均肺计量(MLD)、正常组织并发症概率(NTCP)、总射野数高于无肺炎组(均P0.05)。经多因素Logistic回归分析可得:胸部肿瘤放疗患者放射性肺炎的独立危险因素有肺癌、化疗史、ECOG评分为2分、放疗靶区以肺野为主、PTV、MLD、V_(dose)、NTCP、总射野数、FEV_1、FEV_1/FVC(均P0.05)。结论:放疗可有效改善胸部肿瘤患者的肺功能,其中肺癌、化疗史、ECOG评分为2分、放疗靶区以肺野为主以及PTV、MLD、V_(dose)、NTCP、总射野数、FEV_1、FEV_1/FVC是放射性肺炎的影响因素。  相似文献   

3.
PurposeTo increase the superficial dose and reduce the brain dose for radiotherapy of scalp angiosarcoma, we propose a novel irradiation technique of tangential irradiation volumetric modulated arc therapy (TI-VMAT).MethodsTI-VMAT and the conventional VMAT treatment plans for thirteen scalp angiosarcoma patients were created with a prescribed dose of 70 Gy. Each treatment was normalized to cover 95% of the planning target volume (PTV) with its prescribed dose. To realize TI-VMAT, an avoidance structure (AS) function was applied. AS was defined as a contour subtracted PTV by a certain space from the brain contour. TI-VMAT treatment plans for six different spaces between PTV and AS were developed and compared with the conventional VMAT treatment plan with respect to the following dosimetric parameters: homogeneity index (HI) and conformity index (CI) of the PTV, mean brain dose, and brain volume irradiated with 20% (V20% [cc]), 40% (V40% [cc]), 60% (V60% [cc]), 80% (V80% [cc]), and 100% (V100% [cc]) of the prescribed dose.ResultsHI and CI were comparable between TI-VMAT and the conventional VMAT, the mean brain dose for TI-VMAT with AS defined by a space of 2.0 cm and jaw tracking was 14.27 Gy, which was significantly lower than that for the conventional VMAT (21.20 Gy). In addition, dosimetric parameters such as V20% [cc] were significantly suppressed compared to those for high doses.ConclusionOur proposed irradiation technique TI-VMAT shows the potential to reduce radiation doses in the brain with maintaining higher dose coverage on the PTV.  相似文献   

4.
BackgroundThe management of breath-induced tumor motion is a major challenge for lung stereotactic body radiation therapy (SBRT). Three techniques are currently available for these treatments: tracking (T), gating (G) and free-breathing (FB).AimTo evaluate the dosimetric differences between these three treatment techniques for lung SBRT.Materials and methodsPretreatment 4DCT data were acquired for 10 patients and sorted into 10 phases of a breathing cycle, such as 0% and 50% phases defined respectively as the inhalation and exhalation maximum. GTVph, PTVph (=GTVph + 3 mm) and the ipsilateral lung were contoured on each phase.For the tracking technique, 9 fixed fields were adjusted to each PTVph for the 10 phases. The gating technique was studied with 3 exhalation phases (40%, 50% and 60%). For the free-breathing technique, ITVFB was created from a sum of all GTVph and a 3 mm margin was added to define a PTVFB. Fields were adjusted to PTVFB and dose distributions were calculated on the average intensity projection (AIP) CT. Then, the beam arrangement with the same monitor units was planned on each CT phase.The 3 modalities were evaluated using DVHs of each GTVph, the homogeneity index and the volume of the ipsilateral lung receiving 20 Gy (V20Gy).ResultsThe FB system improved the target coverage by increasing Dmean (75.87(T)–76.08(G)–77.49(FB)Gy). Target coverage was slightly more homogeneous, too (HI: 0.17(T and G)–0.15(FB)). But the lung was better protected with the tracking system (V20Gy: 3.82(T)–4.96(G)–6.34(FB)%).ConclusionsEvery technique provides plans with a good target coverage and lung protection. While irradiation with free-breathing increases doses to GTV, irradiation with the tracking technique spares better the lung but can dramatically increase the treatment complexity.  相似文献   

5.
The goal of this study is to evaluate the effects of intermediate megavoltage (3-MV) photon beams on SBRT lung cancer treatments. To start with, a 3-MV virtual beam was commissioned on a commercial treatment planning system based on Monte Carlo simulations. Three optimized plans (6-MV, 3-MV and dual energy of 3- and 6-MV) were generated for 31 lung cancer patients with identical beam configuration and optimization constraints for each patient. Dosimetric metrics were evaluated and compared among the three plans. Overall, planned dose conformity was comparable among three plans for all 31 patients. For 21 thin patients with average short effective path length (< 10 cm), the 3-MV plans showed better target coverage and homogeneity with dose spillage index R50% = 4.68±0.83 and homogeneity index = 1.26±0.06, as compared to 4.95±1.01 and 1.31±0.08 in the 6-MV plans (p < 0.001). Correspondingly, the average/maximum reductions of lung volumes receiving 20 Gy (V20Gy), 5 Gy (V5Gy), and mean lung dose (MLD) were 7%/20%, 9%/30% and 5%/10%, respectively in the 3-MV plans (p < 0.05). The doses to 5% volumes of the cord, esophagus, trachea and heart were reduced by 9.0%, 10.6%, 11.4% and 7.4%, respectively (p < 0.05). For 10 thick patients, dual energy plans can bring dosimetric benefits with comparable target coverage, integral dose and reduced dose to the critical structures, as compared to the 6-MV plans. In conclusion, our study indicated that 3-MV photon beams have potential dosimetric benefits in treating lung tumors in terms of improved tumor coverage and reduced doses to the adjacent critical structures, in comparison to 6-MV photon beams. Intermediate megavoltage photon beams (< 6-MV) may be considered and added into current treatment approaches to reduce the adjacent normal tissue doses while maintaining sufficient tumor dose coverage in lung cancer radiotherapy.  相似文献   

6.
7.
BackgroundStudy determines differences in calculated dose distributions for non-small cell lung carcinoma (NSC LC) patients. NSC LC cases were investigated, being the most common lung cancer treated by radiotherapy in our clinical practice.Materials and methodsA retrospective study of 15 NSCLC patient dose distributions originally calculated using standard superposition (SS) and recalculated using collapsed cone (CC ) and Monte Carlo (MC) based algorithm expressed as dose to medium in medium (MCDm) and dose to water in medium (MCDw,) was performed so that prescribed dose covers at least 99% of the gross target volume (GTV). Statistical analysis was performed for differences of conformity index (CI), heterogeneity index (HI), gradient index (GI), dose delivered to 2% of the volume (D2%), mean dose (Dmean) and percentage of volumes covered by prescribed dose (V70Gy). For organs at risk (OARs), Dmean and percentage of volume receiving 20 Gy and 5Gy (V20Gy, V5Gy) were analysed.ResultsStatistically significant difference for GTVs was observed between MCDw and SS algorithm in mean dose only. For planning target volumes (PTVs), statistically significant differences were observed in prescribed dose coverage for CC, MCDm and MCDw. The differences in mean CI value for the CC algorithm and mean HI value for MCDm and MCDw were statistically significant. There is a statistically significant difference in the number of MUs for MCDm and MCDw compared to SS.ConclusionAll investigated algorithms succeed in managing the restrictive conditions of the clinical goals. This study shows the drawbacks of the CC algorithm compared to other algorithms used.  相似文献   

8.
AimThe purpose of this study was to evaluate ΔLVP1 and correlate them with MLD2 and V203 in the lobes of the lung.BackgroundRadiation-induced lung injury after breast irradiation is controversial. The incidence of such an injury could have negative consequences on breast cancer patients.Materials and MethodsTwenty-three women treated with Breast-conserving surgery, chemotherapy, and locoregional RT4 underwent body plethysmography pre-RT and 3 and 6 months post-RT. Statistical analysis was used to evaluate ΔLVP over time and relate them with MLD, V20, age, and concurrent hormonal therapy.ResultsLVP decreased after 3 months and then showed a slight improvement by returning partially to their pre-RT values after 6 months. The mean ΔLVP was −0.64% for one Gy increase of MLD and −0.34% for one percent increase of V20 after 3 months. After 6 months, only ΔVC5 showed 0.45% reduction with MLD in the upper lobe. Finally, there was no significant correlation between ΔLVP with respect to age and concurrent hormonal therapy.ConclusionsThe results of this study showed that lung volume changes were not a cause for concern in breast cancer patients. There are three reasons to support this conclusion. Lung volume changes and percentage reductions in LVP for each Gy increase of MLD and each percentage increase of V20 in each lobe were small; patients were asymptomatic during the follow-up period; and LVP showed partial improvements after 6 months.  相似文献   

9.
ObjectiveTo investigate the potential of Particle Swarm Optimization (PSO) for fully automatic VMAT radiotherapy (RT) treatment planning.Material and MethodsIn PSO a solution space of planning constraints is searched for the best possible RT plan in an iterative, statistical method, optimizing a population of candidate solutions. To identify the best candidate solution and for final evaluation a plan quality score (PQS), based on dose volume histogram (DVH) parameters, was introduced.Automatic PSO-based RT planning was used for N = 10 postoperative prostate cancer cases, retrospectively taken from our clinical database, with a prescribed dose of EUD = 66 Gy in addition to two constraints for rectum and one for bladder. Resulting PSO-based plans were compared dosimetrically to manually generated VMAT plans.ResultsPSO successfully proposed treatment plans comparable to manually optimized ones in 9/10 cases. The median (range) PTV EUD was 65.4 Gy (64.7–66.0) for manual and 65.3 Gy (62.5–65.5) for PSO plans, respectively. However PSO plans achieved significantly lower doses in rectum D2% 67.0 Gy (66.5–67.5) vs. 66.1 Gy (64.7–66.5, p = 0.016). All other evaluated parameters (PTV D98% and D2%, rectum V40Gy and V60Gy, bladder D2% and V60Gy) were comparable in both plans. Manual plans had lower PQS compared to PSO plans with −0.82 (−16.43–1.08) vs. 0.91 (−5.98–6.25).ConclusionPSO allows for fully automatic generation of VMAT plans with plan quality comparable to manually optimized plans. However, before clinical implementation further research is needed concerning further adaptation of PSO-specific parameters and the refinement of the PQS.  相似文献   

10.
11.
PurposeTo derive Normal Tissue Complication Probability (NTCP) models for severe patterns of early radiological radiation-induced lung injury (RRLI) in patients treated with radiotherapy (RT) for lung tumors. Second, derive threshold doses and optimal doses for prediction of RRLI to be used in differential diagnosis of tumor recurrence from RRLI during follow-up.Methods and materialsLyman-EUD (LEUD), Logit-EUD (LogEUD), relative seriality (RS) and critical volume (CV) NTCP models, with DVH corrected for fraction size, were used to model the presence of severe early RRLI in follow-up CTs. The models parameters, including α/β, were determined by fitting data from forty-five patients treated with IMRT for lung cancer. Models were assessed using Akaike information criterion (AIC) and area under receiver operating characteristic curve (AUC). Threshold doses for risk of RRLI and doses corresponding to the optimal point of the receiver operating characteristic (ROC) curve were determined.ResultsThe α/βs obtained with different models were 2.7–3.2 Gy. The thresholds and optimal doses curves were EUDs of 3.2–7.8 Gy and 15.2–18.1 Gy with LEUD, LogEUD and RS models, and μd of 0.013 and 0.071 with the CV model. NTCP models had AUCs significantly higher than 0.5. Occurrence and severity of RRLI were correlated with patients’ values of EUD and μd.ConclusionsThe models and dose levels derived can be used in differential diagnosis of tumor recurrence from RRLI in patients treated with RT. Cross validation is needed to prove prediction performance of the model outside the dataset from which it was derived.  相似文献   

12.
13.
AimTo investigate the impact of Acuros XB (AXB) algorithm in the deep-inspiration breath-hold (DIBH) technique used for treatment of left sided breast cancer.BackgroundAXB may estimate better lung toxicities and treatment outcome in DIBH.Materials and MethodsTreatment plans were computed using the field-in-field technique for a 6 MV beam in two respiratory phases - free breathing (FB) and DIBH. The AXB-calculations were performed under identical beam setup and the same numbers of monitor units as used for AAA-calculation.ResultsMean Hounsfield units (HU), mass density (g/cc) and relative electron density were -782.1 ± 24.8 and -883.5 ± 24.9; 0.196 ± 0.025 and 0.083 ± 0.032; 0.218 ± 0.025 and 0.117 ± 0.025 for the lung in the FB and DIBH respiratory phase, respectively. For a similar target coverage (p > 0.05) in the DIBH respiratory phase between the AXB and AAA algorithm, there was a slight increase in organ at risk (OAR) dose for AXB in comparison to AAA, except for mean dose to the ipsilateral lung. AAA predicts higher mean dose to the ipsilateral lung and lesser V20Gy for the ipsilateral and common lung in comparison to AXB. The differences in mean dose to the ipsilateral lung were 0.87 ± 2.66 % (p > 0.05) in FB, and 1.01 ± 1.07% (p < 0.05) in DIBH, in V20Gy the differences were 1.76 ± 0.83% and 1.71 ± 0.82% in FB (p < 0.05), 3.34 ± 1.15 % and 3.24 ± 1.17 % in DIBH (p < 0.05), for the ipsilateral and common lung, respectively.ConclusionFor a similar target volume coverage, there were important differences between the AXB and AAA algorithm for low-density inhomogeneity medium present in the DIBH respiratory phase for left sided breast cancer patients. DIBH treatment in conjunction with AXB may result in better estimation of lung toxicities and treatment outcome.  相似文献   

14.
AimThe primary aim of this study is to provide preliminary indications for safe constraints of rectum and bladder in patients re-irradiated with stereotactic body RT (SBRT).MethodsData from patients treated for prostate cancer (PCa) and intraprostatic relapse, from 1998 to 2016, were retrospectively collected. First RT course was delivered with 3D conformal RT techniques, SBRT or volumetric modulated arc therapy (VMAT). All patients underwent re-irradiation with SBRT with heavy hypofractionated schedules. Cumulative dose-volume values to organs at risk (OARs) were computed and possible correlation with developed toxicities was investigated.ResultsTwenty-six patients were included. Median age at re-irradiation was 75 years, mean interval between the two RT courses was 5.6 years and the median follow-up was 47.7 months (13.4–114.3 months). After re-irradiation, acute and late G ≥ 2 GU toxicity events were reported in 3 (12%) and 10 (38%) patients, respectively, while late G ≥ 2 GI events were reported in 4 (15%) patients. No acute G ≥ 2 GI side effects were registered. Patients receiving an equivalent uniform dose of the two RT treatments < 131 Gy appeared to be at higher risk of progression (4-yr b-PFS: 19% vs 33%, p = 0.145). Cumulative re-irradiation constraints that appear to be safe are D30% < 57.9 Gy for bladder and D30% < 66.0 Gy, D60% < 38.0 Gy and V122.1 Gy < 5% for rectum.ConclusionPreliminary re-irradiation constraints for bladder and rectum have been reported. Our preliminary investigation may serve to clear some grey areas of PCa re-irradiation.  相似文献   

15.
BackgroundThe present paper reports on analysis of 184 patients who were diagnosed with endometrial cancer. The main objective of this study was to address parameter Vrec(30Gy) which determines a volume of the rectum irradiated with a dose of 30 Gy during radiotherapy.Materials and methodsAll patients were irradiated with an IMRT technique on linear accelerators. The planning target volume (PTV) contour was determined by a radiation oncologist. The clinical target volume (CTV) was drawn on CT images obtained in a prone position. For statistical analysis, appropriate tests (e.g. the Shapiro-Wilk, Wilcoxon) were used.Results and discussionThe performed analysis showed that the recommended condition for Vrec(30Gy) is met only in 3% of patients and the observed median value exceeds 90%. The obtained results were compared with the studies in which the Vrec(30Gy) values were related to various radiotherapy techniques.ConclusionsThe analysis showed that the condition for Vrec(30Gy) is satisfied in the case of only 3% of patients. Due to the difficulty with meeting the condition, it should be reconsidered based on real results.  相似文献   

16.
PurposeTo correlate radiation dose to the risk of severe radiologically-evident radiation-induced lung injury (RRLI) using voxel-by-voxel analysis of the follow-up computed tomography (CT) of patients treated for lung cancer with hypofractionated helical Tomotherapy.Methods and materialsThe follow-up CT scans from 32 lung cancer patients treated with various regimens (5, 8, and 25 fractions) were registered to pre-treatment CT using deformable image registration (DIR). The change in density was calculated for each voxel within the combined lungs minus the planning target volume (PTV). Parameters of a Probit formula were derived by fitting the occurrences of changes of density in voxels greater than 0.361 g cm−3 to the radiation dose. The model’s predictive capability was assessed using the area under receiver operating characteristic curve (AUC), the Kolmogorov-Smirnov test for goodness-of-fit, and the permutation test (Ptest).ResultsThe best-fit parameters for prediction of RRLI 6 months post RT were D50 of 73.0 (95% CI 59.2.4–85.3.7) Gy, and m of 0.41 (0.39–0.46) for hypofractionated (5 and 8 fractions) and D50 of 96.8 (76.9–123.9) Gy, and m of 0.36 (0.34–0.39) for 25 fractions RT. According to the goodness-of-fit test the null hypothesis of modeled and observed occurrence of RRLI coming from the same distribution could not be rejected. The AUC was 0.581 (0.575–0.583) for fractionated and 0.579 (0.577–0.581) for hypofractionated patients. The predictive models had AUC>upper 95% band of the Ptest.ConclusionsThe correlation of voxel-by-voxel density increase with dose can be used as a support tool for differential diagnosis of tumor from benign changes in the follow-up of lung IMRT patients.  相似文献   

17.
《Free radical research》2013,47(10):1259-1268
Abstract

Background. The objective of the present study was to determine whether single administration of the antioxidant enzyme bovine superoxide dismutase (bSOD) after radiation therapy (RT) mitigates development of pulmonary toxicity in rats. Methods. Female F344 rats (n = 60) were divided among six experimental groups: (1) RT, single dose of 21 Gy to the right hemithorax; (2) RT + 5 mg/kg bSOD; (3) RT + 15 mg/kg bSOD; (4) No RT; (5) sham RT + 5 mg/kg bSOD; and (6) sham RT + 15 mg/kg bSOD. A single subcutaneous injection of bSOD (5 or 15 mg/kg) was administered 24 h post-radiation. The effects of bSOD on radiation-induced lung injury were assessed by measurement of body weight, breathing frequency, and histopathological changes. Immunohistochemistry was used to evaluate oxidative stress (8-OHdG+, NOX4+, nitrotyrosine+, and 4HNE+ cells), macrophage activation (ED1+), and expression of profibrotic transforming growth factor-β or TGF-β in irradiated tissue. Results. Radiation led to an increase in all the evaluated parameters. Treatment with 15 mg/kg bSOD significantly decreased levels of all the evaluated parameters including tissue damage and breathing frequency starting 6 weeks post-radiation. Animals treated with 5 mg/kg bSOD trended toward a suppression of radiation-induced lung damage but did not reach statistical significance. Conclusions. The single application of bSOD (15 mg/kg) ameliorates radiation-induced lung injury through suppression of reactive oxygen species/reactive nitrogen species or ROS/RNS-dependent tissue damage.  相似文献   

18.

Aim

Our aim was to improve dose distribution to the left breast and to determine the dose received by the ipsilateral lung, heart, contralateral lung and contralateral breast during primary left-sided breast irradiation by using intensity modulated radiotherapy (IMRT) techniques compared to conventional tangential techniques (CTT). At the same time, different beams of IMRT plans were compared to each other in respect to CI, HI and organs at risk (OAR) dose.

Background

Conventional early breast cancer treatment consists of lumpectomy followed by whole breast radiation therapy. CTT is a traditional method used for whole breast radiotherapy and includes standard wedged tangents (two opposed wedged tangential photon beams). The IMRT technique has been widely used for many treatment sites, allowing both improved sparing of normal tissues and more conformal dose distributions. IMRT is a new technique for whole breast radiotherapy. IMRT is used to improve conformity and homogeneity and used to reduce OAR doses.

Materials and methods

Thirty patients with left-sided breast carcinoma were treated between 2005 and 2008 using 6, 18 or mixed 6/18 MV photons for primary breast irradiation following breast conserving surgery (BCS). The clinical target volume [CTV] was contoured as a target volume and the contralateral breast, ipsilateral lung, contralateral lung and heart tissues as organs at risk (OAR). IMRT with seven beams (IMRT7), nine beams (IMRT9) and 11 beams (IMRT11) plans were developed and compared with CTT and among each other. The conformity index (CI), homogeneity index (HI), and doses to OAR were compared to each other.

Results

All of IMRT plans significantly improved CI (CTT: 0.76; IMRT7: 0.84; IMRT9: 0.84; IMRT11: 0.85), HI (CTT: 1.16; IMRT7: 1.12; IMRT9: 1.11; IMRT11: 1.11), volume of the ipsilateral lung receiving more than 20 Gy (>V20 Gy) (CTT: 14.6; IMRT7: 9.08; IMRT9: 8.10; IMRT11: 8.60), and volume of the heart receiving more than 30 Gy (>V30 Gy) (CTT: 6.7; IMRT7: 4.04; IMRT9: 2.80; IMRT11: 2.98) compared to CTT. All IMRT plans were found to significantly decrease >V20 Gy and >V30 Gy volumes compared to conformal plans. But IMRT plans increased the volume of OAR receiving low dose radiotherapy: volume of contralateral lung receiving 5 and 10 Gy (CTT: 0.0–0.0; IMRT7: 19.0–0.7; IMRT9: 17.2–0.66; IMRT11: 18.7–0.58, respectively) and volume of contralateral breast receiving 10 Gy (CTT: 0.03; IMRT7: 0.38; IMRT9: 0.60; IMRT11: 0.68). The differences among IMRT plans with increased number of beams were not statistically significant.

Conclusion

IMRT significantly improved conformity and homogeneity index for plans. Heart and lung volumes receiving high doses were decreased, but OAR receiving low doses was increased.  相似文献   

19.
20.
AimThe aim of this study was to assess treatment modalities, treatment response, toxicity profile, disease progression and outcomes in 14 patients with a confirmed diagnosis of primary cutaneous T-cell lymphoma (PCTCL) treated with total skin electron beam therapy (TSEBT).BackgroundPrimary cutaneous lymphomas (PCLs) are extranodal non-Hodgkin lymphomas originating in the skin without evidence of extracutaneous disease at diagnosis. Despite advances in systemic and local therapy options, the management of advanced stages remains mostly palliative.Materials and MethodsThis is a retrospective study of patients with PCTCL, diagnosed and treated in a reference center in Mexico City, analyzing treatment modalities, response to treatment, long-term outcome, and mortality.ResultsEight males (57%) and 6 (43%) females were identified. Most patients were stage IVA (n = 5, 36%) followed by stage IB and IIB (28.5% and 21.4%, respectively). Eleven patients received the low-dose RT scheme (12 Gy), 1 patient, the intermediate-dose RT scheme (24 Gy), and 2 patients, the conventional-dose RT scheme (36 Gy). Mean follow-up time was 4.6 years. At first follow-up examination, 6–8 weeks after radiotherapy, the overall response rate (ORR) for the cohort was 85%. The median PFS for the whole cohort was 6 months.ConclusionThis study reinforces the role of TSEBT when compared with other treatment modalities and novel agents. Low-dose TSEBT is now widely used because of the opportunity for retreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号