首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clinical experience for peripheral arterial disease treatment shows poor results when synthetic grafts are used to approach infrapopliteal arterial segments. However, tissue engineering may be an option to yield surrogate biocompatible neovessels. Thus, biological decellularized scaffolds could provide natural tissue architecture to use in tissue engineering, when the absence of ideal autologous veins reduces surgical options. The goal of this study was to evaluate different chemical induced decellularization protocols of the inferior vena cava of rabbits. They were decellularized with Triton X100 (TX100), sodium dodecyl sulfate (SDS) or sodium deoxycholate (DS). Afterwards, we assessed the remaining extracellular matrix (ECM) integrity, residual toxicity and the biomechanical resistance of the scaffolds. Our results showed that TX100 was not effective to remove the cells, while protocols using SDS 1% for 2 h and DS 2% for 1 h, efficiently removed the cells and were better characterized. These scaffolds preserved the original organization of ECM. In addition, the residual toxicity assessment did not reveal statistically significant changes while decellularized scaffolds retained the equivalent biomechanical properties when compared with the control. Our results concluded that protocols using SDS and DS were effective at obtaining decellularized scaffolds, which may be useful for blood vessel tissue engineering.  相似文献   

2.
End-organ failure is one of the major healthcare challenges in the Western world. Yet, donor organ shortage and the need for immunosuppression limit the impact of transplantation. The regeneration of whole organs could theoretically overcome these hurdles. Early milestones have been met by combining stem and progenitor cells with increasingly complex scaffold materials and culture conditions. Because the native extracellular matrix (ECM) guides organ development, repair and physiologic regeneration, it provides a promising alternative to synthetic scaffolds and a foundation for regenerative efforts. Perfusion decellularization is a novel technology that generates native ECM scaffolds with intact 3D anatomical architecture and vasculature. This review summarizes achievements to date and discusses the role of native ECM scaffolds in organ regeneration.  相似文献   

3.
Chitosan sponges as tissue engineering scaffolds for bone formation   总被引:15,自引:0,他引:15  
Rat calvarial osteoblasts were grown in porous chitosan sponges fabricated by freeze drying. The prepared chitosan sponges had a porous structure with a 100-200 microm pore diameter, which allowed cell proliferation. Cell density, alkaline phosphatase activity and calcium deposition were monitored for up to 56 d culture. Cell numbers were 4 x 10(6) (day 1), 11 x 10(6) (day 28) and 12 x 10(6) (day 56) per g sponge. Calcium depositions were 9 (day 1), 40 (day 28) and 48 (day 56) microg per sponge. Histological results corroborated that bone formation within the sponges had occurred. These results show that chitosan sponges can be used as effective scaffolding materials for tissue engineered bone formation in vitro.  相似文献   

4.
Collagen scaffolds for tissue engineering   总被引:6,自引:0,他引:6  
Glowacki J  Mizuno S 《Biopolymers》2008,89(5):338-344
There are two major approaches to tissue engineering for regeneration of tissues and organs. One involves cell-free materials and/or factors and one involves delivering cells to contribute to the regeneraion process. Of the many scaffold materials being investigated, collagen type I, with selective removal of its telopeptides, has been shown to have many advantageous features for both of these approaches. Highly porous collagen lattice sponges have been used to support in vitro growth of many types of tissues. Use of bioreactors to control in vitro perfusion of medium and to apply hydrostatic fluid pressure has been shown to enhance histogenesis in collagen scaffolds. Collagen sponges have also been developed to contain differentiating-inducing materials like demineralized bone to stimulate differentiation of cartilage tissue both in vitro and in vivo.  相似文献   

5.
Electrospun poly-l-lactide nanofibres as scaffolds for tissue engineering]   总被引:3,自引:0,他引:3  
Tissue engineering is a promising tool for treating structural and functional defects in bone and cartilage. To provide optimal conditions for three-dimensional cell growth the use of a scaffold is necessary. The aim of the study was to test the potential application of an electrospun poly (l-lactide)-nanostructured scaffold as a matrix for tissue engineering. Matrices were seeded with human osteosarcoma MG-63 cells and cultivated for 14 days. Cells showed a clear preference for growth along the nanofibres, and demonstrated no signs of degeneration or apoptosis. The fine structure of electrospun nanofibres makes them an ideal scaffold for tissue engineering, in particular for cartilage repair. They can be "doped" with growth factors, medications, etc., and are both biocompatible and biodegradable.  相似文献   

6.
PolyHIPEs show great promise as tissue engineering scaffolds due to the tremendous control of pore size and interconnectivity afforded by this technique. Highly porous, fully biodegradable scaffolds were prepared by polymerization of the continuous phase of high internal phase emulsions (HIPEs) containing the macromer poly(propylene fumarate) (PPF) and the cross-linker propylene fumarate diacrylate (PFDA). Toluene was used as a diluent to reduce the viscosity of the organic phase to enable HIPE formation. A range of polyHIPE scaffolds of different pore sizes and morphologies were generated by varying the diluent concentration (40-60 wt %), cross-linker concentration (25-75 wt %), and macromer molecular weight ( M n = 800-1000 g/mol). Although some formulations resulted in macroporous monoliths (pore diameter >500 microm), the majority of the polyHIPEs studied were rigid, microporous monoliths with average pore diameters in the range 10-300 microm. Gravimetric analysis confirmed the porosity of the microporous monoliths as 80-89% with most scaffolds above 84%. These studies demonstrate that emulsion templating can be used to generate rigid, biodegradable scaffolds with highly interconnected pores suitable for tissue engineering scaffolds.  相似文献   

7.
8.
The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic.  相似文献   

9.
Composite scaffolds for cartilage tissue engineering   总被引:2,自引:0,他引:2  
Moutos FT  Guilak F 《Biorheology》2008,45(3-4):501-512
Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.  相似文献   

10.
Cellulose and sulfated cellulose fibrous meshes exhibiting robust structural and mechanical integrity in water were fabricated using a combination of electrospinning, thermal-mechanical annealing and chemical modifications. The sulfated fibrous mesh exhibited higher retention capacity for human recombinant bone morphogenetic protein-2 than the cellulose mesh, and the retained proteins remained biologically active for at least 7 days. The sulfated fibrous mesh also more readily supported the attachment and osteogenic differentiation of rat bone marrow stromal cells in the absence of osteogenic growth factors. These properties combined make the sulfated cellulose fibrous mesh a promising bone tissue engineering scaffold.  相似文献   

11.
Hydrogels are physically or chemically cross-linked polymer networks that are able to absorb large amounts of water. They can be classified into different categories depending on various parameters including the preparation method, the charge, and the mechanical and structural characteristics. The present review aims to give an overview of hydrogels based on natural polymers and their various applications in the field of tissue engineering. In a first part, relevant parameters describing different hydrogel properties and the strategies applied to finetune these characteristics will be described. In a second part, an important class of biopolymers that possess thermosensitive properties (UCST or LCST behavior) will be discussed. Another part of the review will be devoted to the application of cryogels. Finally, the most relevant biopolymer-based hydrogel systems, the different methods of preparation, as well as an in depth overview of the applications in the field of tissue engineering will be given.  相似文献   

12.
13.
14.
Novel biocompatible and biodegradable amphoteric poly(amidoamine) (PAA) hydrogels were designed for applications as scaffolds for tissue engineering. These hydrogels (PAA-AG1 and PAA-AG2) were obtained by polyaddition of 2,2-bisacrylamidoacetic acid with 2-methylpiperazine and 4-aminobutyl guanidine, a bioactive molecule with a known ability to induce adhesion to cell membranes. They contain carboxylic functions in their main chain and interchain connections deriving from two different cross-linking agents: for PAA-AG1, a multifunctional primary amine, that is, 1,10-decanediamine; for PAA-AG2, a purposely synthesized PAA (PAA-NH(2)) containing pendant NH(2). Both PAA-AG1 and PAA-AG2 proved noncytotoxic and adhesive to cell membranes, as ascertained by means of cytotoxicity and proliferation tests carried out on fibroblast cell lines. Good apparent mechanical strength was also observed in the case of PAA-AG2, cross-linked with the PAA-NH(2). Both PAA-AG1 and PAA-AG2 underwent degradation tests under controlled conditions simulating the biological environments, that is, Dulbecco medium at pH 7.4 and 37 degrees C. They completely dissolved within 10 and about 40 days, respectively. In both cases, the degradation products were completely noncytotoxic. All the results of this paper point to the conclusion that agmatine-based PAA hydrogels are excellent substrates for cell proliferation.  相似文献   

15.
《Biotechnology advances》2017,35(2):240-250
Engineering a functional tissue ex vivo requires a synchronized effort towards developing technologies for ECM mimicking scaffold and cultivating tissue-specific cells in an integrated and controlled manner. Cell-interactive scaffolds in three dimensions (3D), designed and processed appropriately with an apt biomaterial to yield optimal porosity and mechanical strength is the key in tissue engineering (TE). In order to accomplish these facets in a 3D scaffold, multiple techniques and processes have been explored by researchers all over the world. New techniques offering reasonable flexibility to use blends of different materials for integrated tissue-specific mechanical strength and biocompatibility have an edge over conventional methods. They may allow a combinatorial approach with a mix of materials while incorporating multiple processing techniques for successful creation of tissue-specific ECM mimics. In this review, we analyze the material requirement from different TE perspectives, while discussing pros and cons of advanced fabrication techniques for scale-up manufacturing.  相似文献   

16.
In the emerging field of tissue engineering and regenerative medicine, new viable and functional tissue is fabricated from living cells cultured on an artificial matrix in a simulated biological environment. It is evident that the specific requirements for the three main components, cells, scaffold materials, and the culture environment, are very different, depending on the type of cells and the organ-specific application. Identifying the variables within each of these components is a complex and challenging assignment, but there do exist general requirements for designing and fabricating tissue engineering scaffolds. Therefore, this review explores one of the three main components, namely, the key concepts, important parameters, and required characteristics related to the development and evaluation of tissue engineering scaffolds. An array of different design strategies will be discussed, which include mimicking the extra cellular matrix, responding to the need for mass transport, predicting the structural architecture, ensuring adequate initial mechanical integrity, modifying the surface chemistry and topography to provide cell signaling, and anticipating the material selection so as to predict the required rate of bioresorption. In addition, this review considers the major challenge of achieving adequate vascularization in tissue engineering constructs, without which no three-dimensional thick tissue such as the heart, liver, and kidney can remain viable.  相似文献   

17.
Novel peptide-based biomaterial scaffolds for tissue engineering.   总被引:18,自引:0,他引:18  
Biomaterial scaffolds are components of cell-laden artificial tissues and transplantable biosensors. Some of the most promising new synthetic biomaterial scaffolds are composed of self-assembling peptides that can be modified to contain biologically active motifs. Peptide-based biomaterials can be fabricated to form two- and three-dimensional structures. Recent studies show that biomaterial promotion of multi-dimensional cell-cell interactions and cell density are crucial for proper cellular differentiation and for subsequent tissue formation. Other refinements in tissue engineering include the use of stem cells, cell pre-selection and growth factor pre-treatment of cells that are used for seeding scaffolds. These cell-culture technologies, combined with improved processes for defining the dimensions of peptide-based scaffolds, might lead to further improvements in tissue engineering. Novel peptide-based biomaterial scaffolds seeded with cells show promise for tissue repair and for other medical applications.  相似文献   

18.
19.
Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biodegradable polymers with functional groups that are used to couple bioactive agents. Presenting bioactive agents on scaffolding surfaces is the most efficient way to elicit desired cell/material interactions. This paper reviews recent advancements in the development of functionalized biodegradable polymer scaffolds for tissue engineering, emphasizing the syntheses of functional biodegradable polymers, and surface modification of polymeric scaffolds.  相似文献   

20.
Porous artificial bone substitutes, especially bone scaffolds coupled with osteobiologics, have been developed as an alternative to the traditional bone grafts. The bone scaffold should have a set of properties to provide mechanical support and simultaneously promote tissue regeneration. Among these properties, scaffold permeability is a determinant factor as it plays a major role in the ability for cells to penetrate the porous media and for nutrients to diffuse. Thus, the aim of this work is to characterize the permeability of the scaffold microstructure, using both computational and experimental methods. Computationally, permeability was estimated by homogenization methods applied to the problem of a fluid flow through a porous media. These homogenized permeability properties are compared with those obtained experimentally. For this purpose a simple experimental setup was used to test scaffolds built using Solid Free Form techniques. The obtained results show a linear correlation between the computational and the experimental permeability. Also, this study showed that permeability encompasses the influence of both porosity and pore size on mass transport, thus indicating its importance as a design parameter. This work indicates that the mathematical approach used to determine permeability may be useful as a scaffold design tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号