首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geranylgeranyltransferase I inhibitors (GGTIs) are presently undergoing advanced preclinical studies and have been shown to disrupt oncogenic and tumor survival pathways, to inhibit anchorage-dependent and -independent growth, and to induce apoptosis. However, the geranylgeranylated proteins that are targeted by GGTIs to induce these effects are not known. Here we provide evidence that the Ras-like small GTPases RalA and RalB are exclusively geranylgeranylated and that inhibition of their geranylgeranylation mediates, at least in part, the effects of GGTIs on anchorage-dependent and -independent growth and tumor apoptosis. To this end, we have created the corresponding carboxyl-terminal mutants that are exclusively farnesylated and verified that they retain the subcellular localization and signaling activities of the wild-type geranylgeranylated proteins and that Ral GTPases do not undergo alternative prenylation in response to GGTI treatment. By expressing farnesylated, GGTI-resistant RalA and RalB in Cos7 cells and human pancreatic MiaPaCa2 cancer cells followed by GGTI-2417 treatment, we demonstrated that farnesylated RalB, but not RalA, confers resistance to the proapoptotic and anti-anchorage-dependent growth effects of GGTI-2417. Conversely, farnesylated RalA but not RalB expression renders MiaPaCa2 cells less sensitive to inhibition of anchorage-independent growth. Furthermore, farnesylated RalB, but not RalA, inhibits the ability of GGTI-2417 to suppress survivin and induce p27Kip1 protein levels. We conclude that RalA and RalB are important, functionally distinct targets for GGTI-mediated tumor apoptosis and growth inhibition.  相似文献   

2.
Mutant K-Ras and survivin both contribute to oncogenesis, but little is known about K-Ras requirement for the maintenance of the high levels of survivin in human tumors. Here we demonstrate that K-Ras depletion significantly decreases survivin levels in human cancer cells that harbor mutant but not wild type K-Ras. K-Ras depletion attenuates both basal and drug-induced survivin levels. The mechanism by which K-Ras depletion decreases survivin levels is through ubiquitination and proteasomal degradation of survivin and is independent of survivin-Thr-34 phosphorylation. Depletion of RalA and RalB, but not Raf-1, Akt1 and Akt2, decreases survivin levels, suggesting that K-Ras may regulate survivin stability through its RalGDS/Ral but not PI3K/Akt and Raf-1/Mek effector pathways. Furthermore, the ability of mutant K-Ras to induce anchorage-independent growth, invasion and survival is compromised by depletion of survivin. These studies suggest that mutant K-Ras contributes to the maintenance of the aberrantly high levels of survivin in tumors by regulating its stability, and that the ability of mutant K-Ras to induce malignant transformation is, at least in part, dependent on these high levels of survivin.  相似文献   

3.
Our recent studies implicated key and distinct roles for the highly related RalA and RalB small GTPases (82% sequence identity) in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis and invasive and metastatic growth, respectively. How RalB may promote PDAC invasion and metastasis has not been determined. In light of known Ral effector functions in regulation of actin organization and secretion, we addressed a possible role for RalB in formation of invadopodia, actin-rich membrane protrusions that contribute to tissue invasion and matrix remodeling. We determined that a majority of KRAS mutant PDAC cell lines exhibited invadopodia and that expression of activated K-Ras is both necessary and sufficient for invadopodium formation. Invadopodium formation was not dependent on the canonical Raf-MEK-ERK effector pathway and was instead dependent on the Ral effector pathway. However, this process was more dependent on RalB than on RalA. Surprisingly, RalB-mediated invadopodium formation was dependent on RalBP1/RLIP76 but not Sec5 and Exo84 exocyst effector function. Unexpectedly, the requirement for RalBP1 was independent of its best known function as a GTPase-activating protein for Rho small GTPases. Instead, disruption of the ATPase function of RalBP1 impaired invadopodium formation. Our results identify a novel RalB-mediated biochemical and signaling mechanism for invadopodium formation.  相似文献   

4.
The Ras-like small GTPases RalA and RalB are well validated effectors of RAS oncogene-driven human cancer growth, and pharmacologic inhibitors of Ral function may provide an effective anti-Ras therapeutic strategy. Intriguingly, although RalA and RalB share strong overall amino acid sequence identity, exhibit essentially identical structural and biochemical properties, and can utilize the same downstream effectors, they also exhibit divergent and sometimes opposing roles in the tumorigenic and metastatic growth of different cancer types. These distinct biological functions have been attributed largely to sequence divergence in their carboxyl-terminal hypervariable regions. However, the role of posttranslational modifications signaled by the hypervariable region carboxyl-terminal tetrapeptide CAAX motif (C = cysteine, A = aliphatic amino acid, X = terminal residue) in Ral isoform-selective functions has not been addressed. We determined that these modifications have distinct roles and consequences. Both RalA and RalB require Ras converting CAAX endopeptidase 1 (RCE1) for association with the plasma membrane, albeit not with endomembranes, and loss of RCE1 caused mislocalization as well as sustained activation of both RalA and RalB. In contrast, isoprenylcysteine carboxylmethyltransferase (ICMT) deficiency disrupted plasma membrane localization only of RalB, whereas RalA depended on ICMT for efficient endosomal localization. Furthermore, the absence of ICMT increased stability of RalB but not RalA protein. Finally, palmitoylation was critical for subcellular localization of RalB but not RalA. In summary, we have identified striking isoform-specific consequences of distinct CAAX-signaled posttranslational modifications that contribute to the divergent subcellular localization and activity of RalA and RalB.  相似文献   

5.

Background

Previously we have shown that oncogenic Ha-Ras stimulated in vivo metastasis through RalGEF-Ral signaling. RalA and RalB are highly homologous small G proteins belonging to Ras superfamily. They can be activated by Ras-RalGEF signaling pathway and influence cellular growth and survival, motility, vesicular transport and tumor progression in humans and in animal models. Here we first time compared the influence of RalA and RalB on tumorigenic, invasive and metastatic properties of RSV transformed hamster fibroblasts.

Methods

Retroviral vectors encoding activated forms or effector mutants of RalA or RalB proteins were introduced into the low metastatic HET-SR cell line. Tumor growth and spontaneous metastatic activity (SMA) were evaluated on immunocompetent hamsters after subcutaneous injection of cells. The biological properties of cells, including proliferation, clonogenicity, migration and invasion were determined using MTT, wound healing, colony formation and Boyden chamber assays respectively. Protein expression and phosphorylation was detected by Westen blot analysis. Extracellular proteinases activity was assessed by substrate-specific zymography.

Results

We have showed that although both Ral proteins stimulated SMA, RalB was more effective in metastasis stimulation in vivo as well as in potentiating of directed movement and invasion in vitro. Simultaneous expression of active RalA and RalB didn't give synergetic effect on metastasis formation. RalB activity decreased expression of Caveolin-1, while active RalA stimulated MMP-1 and uPA proteolytic activity, as well as CD24 expression. Both Ral proteins were capable of Cyclin D1 upregulation, JNK1 kinase activation, and stimulation of colony growth and motility. Among three main RalB effectors (RalBP1, exocyst complex and PLD1), PLD1 was essential for RalB-dependent metastasis stimulation.

Conclusions

Presented results are the first data on direct comparison of RalA and RalB impact as well as of RalA/RalB simultaneous expression influence on in vivo cell metastatic activity. We showed that RalB activation significantly more than RalA stimulates SMA. This property correlates with the ability of RalB to stimulate in vitro invasion and serum directed cell movement. We also found that RalB-PLD1 interaction is necessary for the acquisition of RalB-dependent high metastatic cell phenotype. These findings contribute to the identification of molecular mechanisms of metastasis and tumor progression.  相似文献   

6.
BACKGROUND: The Ral guanine nucleotide-exchange factors (RalGEFs) serve as key effectors for Ras oncogene transformation of immortalized human cells. RalGEFs are activators of the highly related RalA and RalB small GTPases, although only the former has been found to promote Ras-mediated growth transformation of human cells. In the present study, we determined whether RalA and RalB also had divergent roles in promoting the aberrant growth of pancreatic cancers, which are characterized by the highest occurrence of Ras mutations. RESULTS: We now show that inhibition of RalA but not RalB expression universally reduced the transformed and tumorigenic growth in a panel of ten genetically diverse human pancreatic cancer cell lines. Despite the apparent unimportant role of RalB in tumorigenic growth, it was nevertheless critical for invasion in seven of nine pancreatic cancer cell lines and for metastasis as assessed by tail-vein injection of three different tumorigenic cell lines tested. Moreover, both RalA and RalB were more commonly activated in pancreatic tumor tissue than other Ras effector pathways. CONCLUSIONS: RalA function is critical to tumor initiation, whereas RalB function is more important for tumor metastasis in the tested cell lines and thus argues for critical, but distinct, roles of Ral proteins during the dynamic progression of Ras-driven pancreatic cancers.  相似文献   

7.
Ras GTPases signal by orchestrating a balance among several effector pathways, of which those driven by the GTPases RalA and RalB are essential to Ras oncogenic functions. RalA and RalB share the same effectors but support different aspects of oncogenesis. One example is the importance of active RalA in anchorage-independent growth and membrane raft trafficking. This study has shown a new post-translational modification of Ral GTPases: nondegradative ubiquitination. RalA (but not RalB) ubiquitination increases in anchorage-independent conditions in a caveolin-dependent manner and when lipid rafts are endocytosed. Forcing RalA mono-ubiquitination (by expressing a protein fusion consisting of ubiquitin fused N-terminally to RalA) leads to RalA enrichment at the plasma membrane and increases raft exposure. This study suggests the existence of an ubiquitination/de-ubiquitination cycle superimposed on the GDP/GTP cycle of RalA, involved in the regulation of RalA activity as well as in membrane raft trafficking.  相似文献   

8.
Our recent studies established essential and distinct roles for RalA and RalB small GTPase activation in K-Ras mutant pancreatic ductal adenocarcinoma (PDAC) cell line tumorigencity, invasion, and metastasis. However, the mechanism of Ral GTPase activation in PDAC has not been determined. There are four highly related mammalian RalGEFs (RalGDS, Rgl1, Rgl2, and Rgl3) that can serve as Ras effectors. Whether or not they share distinct or overlapping functions in K-Ras-mediated growth transformation has not been explored. We found that plasma membrane targeting to mimic persistent Ras activation enhanced the growth-transforming activities of RalGEFs. Unexpectedly, transforming activity did not correlate directly with total cell steady-state levels of Ral activation. Next, we observed elevated Rgl2 expression in PDAC tumor tissue and cell lines. Expression of dominant negative Ral, which blocks RalGEF function, as well as interfering RNA suppression of Rgl2, reduced PDAC cell line steady-state Ral activity, growth in soft agar, and Matrigel invasion. Surprisingly, the effect of Rgl2 on anchorage-independent growth could not be rescued by constitutively activated RalA, suggesting a novel Ral-independent function for Rgl2 in transformation. Finally, we determined that Rgl2 and RalB both localized to the leading edge, and this localization of RalB was dependent on endogenous Rgl2 expression. In summary, our observations support nonredundant roles for RalGEFs in Ras-mediated oncogenesis and a key role for Rgl2 in Ral activation and Ral-independent PDAC growth.  相似文献   

9.
Since their discovery in 1986, Ral (Ras-like) GTPases have emerged as critical regulators of diverse cellular functions. Ral-selective guanine nucleotide exchange factors (RalGEFs) function as downstream effectors of the Ras oncoprotein, and the RalGEF–Ral signaling network comprises the third best characterized effector of Ras-dependent human oncogenesis. Because of this, Ral GTPases as well as their effectors are being explored as possible therapeutic targets in the treatment of RAS mutant cancer. The two Ral isoforms, RalA and RalB, interact with a variety of downstream effectors and have been found to play key and distinct roles in both normal and neoplastic cell physiology including regulation of vesicular trafficking, migration and invasion, tumor formation, metastasis, and gene expression. In this review we provide an overview of Ral biochemistry and biology, and we highlight recent discoveries.  相似文献   

10.
Ral GTPases may be involved in calcium/calmodulin-mediated intracellular signaling pathways. RalA and RalB are activated by calcium, and RalA binds calmodulin in vitro. It was examined whether RalA can bind calmodulin in vivo, whether RalB can bind calmodulin, and whether calmodulin is functionally involved in Ral activation. Yeast two-hybrid analyses demonstrated both Rals interact directly but differentially with calmodulin. Coimmunoprecipitation experiments determined that calmodulin and RalB form complexes in human platelets. In vitro pull-down experiments in platelets and in vitro binding assays showed endogenous Ral and calmodulin interact in a calcium-dependent manner. Truncated Ral constructs determined in vitro and in vivo that RalA has an additional calmodulin binding domain to that previously described, that although RalB binds calmodulin, its C-terminal region is involved in partially inhibiting this interaction, and that in vitro RalA and RalB have an N-terminal calcium-independent and a C-terminal calcium-dependent calmodulin binding domain. Functionally, in vitro Ral-GTP pull-down experiments determined that calmodulin is required for the thrombin-induced activation of Ral in human platelets. We propose that differential binding of calmodulin by RalA and RalB underlies possible functional differences between the two proteins and that calmodulin is involved in the regulation of the activation of Ral-GTPases.  相似文献   

11.
The Ras family GTPases RalA and RalB have been defined as central components of the regulatory machinery supporting tumor initiation and progression. Although it is known that Ral proteins mediate oncogenic Ras signaling and physically and functionally interact with vesicle trafficking machinery, their mechanistic contribution to oncogenic transformation is unknown. Here, we have directly evaluated the relative contribution of Ral proteins and Ral effector pathways to cell motility and directional migration. Through loss-of-function analysis, we find that RalA is not limiting for cell migration in normal mammalian epithelial cells. In contrast, RalB and the Sec6/8 complex or exocyst, an immediate downstream Ral effector complex, are required for vectorial cell motility. RalB expression is required for promoting both exocyst assembly and localization to the leading edge of moving cells. We propose that RalB regulation of exocyst function is required for the coordinated delivery of secretory vesicles to the sites of dynamic plasma membrane expansion that specify directional movement.  相似文献   

12.
The Ras family G-proteins RalA and RalB make critical non-overlapping contributions to the generation of a tumorigenic regulatory network, supporting bypass of the normal restraints on both cell proliferation and survival. The Sec6/8 complex, or exocyst, has emerged as a principal direct effector complex for Ral GTPases. Here, we show that RalA and RalB support mitotic progression through mobilization of the exocyst for two spatially and kinetically distinct steps of cytokinesis. RalA is required to tether the exocyst to the cytokinetic furrow in early cytokinesis. RalB is then required for recruitment of the exocyst to the midbody of this bridge to drive abscission and completion of cytokinesis. The collaborative action of RalA and RalB is specified by discrete subcellular compartmentalization and unique pairs of RalGEF proteins that provide inputs from both Ras-family protein-dependent and protein-independent regulatory cues. This suggests that Ral GTPases integrate diverse upstream signals to choreograph multiple roles for the exocyst in mitotic progression.  相似文献   

13.
NK cells are key components of the immune response to virally infected and tumor cells. Recognition of target cells initiates a series of events in NK cells that culminates in target destruction via directed secretion of lytic granules. Ral proteins are members of the Ras superfamily of small GTPases; they regulate vesicular trafficking and polarized granule secretion in several cell types. In this study, we address the role of Ral GTPases in cell-mediated cytotoxicity. Using a human NK cell line and human primary NK cells, we show that both Ral isoforms, RalA and RalB, are activated rapidly after target cell recognition. Furthermore, silencing of RalA and RalB impaired NK cell cytotoxicity. RalA regulated granule polarization toward the immunological synapse and the subsequent process of degranulation, whereas RalB regulated degranulation but not polarization of lytic granules. Analysis of the molecular mechanism indicated that Ral activation in NK cells leads to assembly of the exocyst, a protein complex involved in polarized secretion. This assembly is required for degranulation, as interference with expression of the exocyst component Sec5 led to reduced degranulation and impaired cytotoxicity in NK cells. Our results thus identify a role for Ral in cell-mediated cytotoxicity, implicating these GTPases in lymphocyte function.  相似文献   

14.
RalA and RalB constitute a family of highly similar (85% identity) Ras-related GTPases. Recently, active forms of both RalA and RalB have been shown to bind to the exocyst complex, implicating them in the regulation of cellular secretion. However, we show here that only active RalA enhances the rate of delivery of E-cadherin and other proteins to their site in the basolateral membrane of MDCK cells, consistent with RalA being a regulator of exocyst function. One reason for this difference is that RalA binds more effectively to the exocyst complex than active RalB does both in vivo and in vitro. Another reason is that active RalA localizes to perinuclear recycling endosomes, where regulation of vesicle sorting is thought to take place, while active RalB does not. Strikingly, analysis of chimeras made between RalA and RalB reveals that high-affinity exocyst binding by RalA is due to unique amino acid sequences in RalA that are distal to the common effector-binding domains shared by RalA and RalB. Moreover, these chimeras show that the perinuclear localization of active RalA is due in part to its unique variable domain near the C terminus. This distinct localization appears to be important for RalA effects on secretion because all RalA mutants tested that failed to localize to the perinuclear region also failed to promote basolateral delivery of E-cadherin. Interestingly, one of these inactive mutants maintained binding to the exocyst complex, suggesting that RalA binding to the exocyst is necessary but not sufficient for RalA to promote basolateral delivery of membrane proteins.  相似文献   

15.
T Urano  R Emkey    L A Feig 《The EMBO journal》1996,15(4):810-816
Ral proteins (RalA and RalB) comprise a distinct family of Ras-related GTPases (Feig and Emkey, 1993). Recently, Ral-GDS, the exchange factor that activates Ral proteins, has been shown to bind specifically to the activated forms of RasH, R-Ras and Rap1A, in the yeast two-hybrid system. Here we demonstrate that although all three GTPases have the capacity to bind Ral-GDS in mammalian cells, only RasH activates Ral-GDS. Furthermore, although constitutively activated Ra1A does not induce oncogenic transformation on its own, its expression enhances the transforming activities of both RasH and Raf. Finally, a dominant inhibitory form of RalA suppresses the transforming activities of both RasH and Raf. These results demonstrate that activation of Ral-GDS and thus its target, Ral, constitutes a distinct downstream signaling pathway from RasH that potentiates oncogenic transformation.  相似文献   

16.
17.
18.
19.
Oncogenic Ras proteins rely on a series of key effector pathways to drive the physiological changes that lead to tumorigenic growth. Of these effector pathways, the RalGEF pathway, which activates the two Ras-related GTPases RalA and RalB, remains the most poorly understood. This review will focus on key developments in our understanding of Ral biology, and will speculate on how aberrant activation of the multiple diverse Ral effector proteins might collectively contribute to oncogenic transformation and other aspects of tumor progression.  相似文献   

20.
Tight junctions (TJs) are structures indispensable to epithelial cells and are responsible for regulation of paracellular diffusion and maintenance of cellular polarity. Although many interactions between TJ constituents have been identified, questions remain concerning how specific functions of TJs are established and regulated. Here we investigated the roles of Ral GTPases and their common effector exocyst complex in the formation of nascent TJs. Unexpectedly, RNA interference-mediated suppression of RalA or RalB caused opposing changes in TJ development. RalA reduction increased paracellular permeability and decreased incorporation of components into TJs, whereas RalB reduction decreased paracellular permeability and increased incorporation of components into TJs. Activities of both Ral GTPases were mediated through the exocyst. Finally, we show that TJ-mediated separation of apical-basal membrane domains is established prior to equilibration of barrier function and that it is unaffected by Ral knockdown or specific composition of TJs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号