首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
内蒙古地区蒙古族HLA-A、B、DRB1基因座多态性分析   总被引:2,自引:0,他引:2  
沈春梅  朱波峰  李生斌 《遗传》2008,30(2):164-168
应用序列特异性寡核苷酸探针反向斑点杂交技术对内蒙古地区蒙古族106名无关健康个体的HLA-A、B和DRB1 基因座进行基因分型, 以研究内蒙古地区蒙古族人群HLA-A、B、DRB1基因座的等位基因及其组成的单倍型频率分布特征。 采用最大数学预期值算法计算HLA基因座的等位基因频率和单倍型频率。106 名内蒙古地区蒙古族个体的HLA-A、B、DRB1基因座分别检出13、29、13个等位基因。高频单倍型分别为 HLA-A*02-B*46 (0.0510); HLA-A*02-B*13(0.0495); HLA-A*02-B*51(0.0442); HLA-B*13-DRB1*07 (0.0555); HLA- B*46-DRB1*09(0.0378); HLA-B*35-DRB1*13(0.03300); HLA-A*02-B*13-DRB1*07(0.033019); HLA-A*02-B*46- DRB1*09(0.031985)。研究表明: 内蒙古地区蒙古族人群HLA基因座的等位基因和单倍型具有较高的遗传多态性。HLA- A*24-B*14, HLA-A*32-B*63在该民族具有极强的连锁不平衡。  相似文献   

2.
Amerindian Mapuche (Araucanians) are now living in Chile and Argentina at both sides of Andean Mountains. They are anthropologically and genetically different from southernmost South America Patagonian Amerindians. Most of the HLA alleles found in our Mapuche sample are frequent or very frequent in North and South America Amerindians: (1) Class I: A*02:01, A*03:01, A*68:01, B*39:09, B*51:01, (2) Class II: DRB1*03:01, DRB1*04:03, DRB1*07:01, DRB1*08:02, DRB1*14:02, DRB1*16:02. One of the nine most frequent extended haplotypes seems to be from European origin, suggesting the existence of a degree of admixture with Europeans in our Mapuche sample. It has been calculated of about 11 % admixture. Three of the extended haplotypes are also found in other Amerindians and five of them are newly found in Mapuche Amerindians: A*68:01-B*39:09-DRB1*08:02-DQB1*04:02; A*68:01-B*51:01-DRB1*04:03-DQB1*03:02; A*29:01-B*08:01-DRB1*03:01-DQB1*02:01; A*02:01-B*15:01-DRB1*04:03-DQB1*03:02; A*33:01-B*14:02-DRB1*07:01-DQB1*03:03. The medical importance of calculating HLA profile is discussed on the diagnostic (HLA and disease) and therapeutical bases of HLA pharmacogenomics and on the construction of a virtual transplantation HLA list profile. Also, anthropological conclusions are drawn.  相似文献   

3.
In view of its distinct geographical location and relatively small area, Tunisia witnessed the presence of many civilizations and ethnic groups throughout history, thereby questioning the origin of present-day Tunisian population. We investigated HLA class I and class II gene profiles in Tunisians, and compared this profile with those of Mediterranean and Sub-Sahara African populations. A total of 376 unrelated Tunisian individuals of both genders were genotyped for HLA class I (A, B) and class II (DRB1, DQB1), using reverse dot-blot hybridization (PCR-SSO) method. Statistical analysis was performed using Arlequin software. Phylogenetic trees were constructed by DISPAN software, and correspondence analysis was carried out by VISTA software. One hundred fifty-three HLA alleles were identified in the studied sample, which comprised 41, 50, 40 and 22 alleles at HLA-A,-B,-DRB1 and -DQB1 loci, respectively. The most frequent alleles were HLA-A*02:01 (16.76%), HLA-B*44:02/03 (17.82%), HLA-DRB1*07:01 (19.02%), and HLA-DQB1*03:01 (17.95%). Four-locus haplotype analysis identified HLA-A*02:01-B*50:01-DRB1*07:01-DQB1*02:02 (2.2%) as the common haplotype in Tunisians. Compared to other nearby populations, Tunisians appear to be genetically related to Western Mediterranean population, in particular North Africans and Berbers. In conclusion, HLA genotype results indicate that Tunisians are related to present-day North Africans, Berbers and to Iberians, but not to Eastern Arabs (Palestinians, Jordanians and Lebanese). This suggests that the genetic contribution of Arab invasion of 7th-11th century A.D. had little impact of the North African gene pool.  相似文献   

4.
HLA class I and class II alleles have been studied in 60 unrelated people belonging to Mayos ethnic group, which lives in the Mexican Pacific Sinaloa State. Mayos HLA profile was compared to other Amerindians and worldwide populations’ profile. A total of 14,896 chromosomes were used for comparisons. Genetic distances between populations, Neigbour-Joining dendrograms and correspondence analyses were performed to determine the genetic relationship among population. The new specific Mayo HLA haplotypes found are: HLA-A*02-B*35-DRB1*1406-DQB1*0301; HLA-A*02-B*48-DRB1*0404-DQB1*0302; HLA-A*24-B*51-DRB1*0407-DQB1*0302 and HLA-A*02-B*08-DRB1*0407-DQB1*0302. However, the typical Meso American HLADRB1*0407 represents a 40% of all DRB1 alleles. While common HLA characteristics are found in Amerindian distant ethnic groups, still new group specific HLA haplotypes are being found, suggesting that a common founder effect (i.e. high DRB1*0407) is noticed. Moreover, new HLA haplotypes are almost certainly appearing along time probably due to specific pathogen (?) selection for diversity. Mayo language is close to the Tarahumara one (another geographically close group); notwithstanding both groups are not genetically close according to our results, showing again the different evolution of genes and languages, which do not correlate. Finally, Sinaloa is one of the Mexican States in which more European genes are found. However, the results presented in this paper, where no European HLA genes are seen in Mayos, should have a bearing in establishing transplant programs and in HLA and disease studies.Key Words: Amerindians, HLA, mayos, mexica, nahua, transplant.  相似文献   

5.
The human leukocyte antigen (HLA) system plays a central role in the immune response to pathogens, as well as in organ and allogenic hematopoietic stem cell transplantation (HSCT). Finding a five-locus (i.e., HLA-A, -B, -C, -DRB1, and -DQB1) matched unrelated donor for a patient awaiting HSCT is a major clinical challenge, due to the lack of HLA-identical sibling donors and the high polymorphism of HLA. To date, most studies providing HLA allele frequencies (AF) and haplotype frequencies (HF) in Chinese populations have focused on donors instead of the recipients and have provided data for three loci (HLA-A, -B, and -DR); however, data from five-locus HLA typing in a large sample of patients, especially those with hematological diseases, remains unavailable. Therefore, this study was designed to determine HLA AF and two-, three-, four- and five-locus HF in a large cohort of Chinese Han patients with hematological diseases. The AF and the HF were determined using high-resolution HLA typing data from 2,878 patients. The total number of HLA-A, -B, -C, -DRB1, and -DQB1 alleles was determined to be 48, 92, 49, 52, and 24, respectively. Hardy-Weinberg equilibrium (HWE) analyses indicated significant deviations from HWE for HLA-A, -C, -DRB1, and -DQB1 AF, but not for HLA-B locus. The three most common alleles at each locus were A*11:01, A*24:02, A*02:01; B*46:01, B*40:01, B*13:02; C*01:02, C*07:02, C*06:02; DRB1*09:01, DRB1*15:01, DRB1*07:01; DQB1*03:01, DQB1*03:03, and DQB1*06:01. Our data may help to determine whether the current bone marrow registry contains sufficient diversity to meet the demand.  相似文献   

6.

Background

Host immunogenetic factors such as HLA class I polymorphism are important to HIV-1 infection risk and AIDS progression. Previous studies using high-resolution HLA class I profile data of Chinese populations appeared insufficient to provide information for HIV-1 vaccine development and clinical trial design. Here we reported HLA class I association with HIV-1 susceptibility in a Chinese Han and a Chinese Uyghur cohort.

Methodology/Principal Findings

Our cohort included 327 Han and 161 Uyghur ethnic individuals. Each cohort included HIV-1 seropositive and HIV-1 seronegative subjects. Four-digit HLA class I typing was performed by sequencing-based typing and high-resolution PCR-sequence specific primer. We compared the HLA class I allele and inferred haplotype frequencies between HIV-1 seropositive and seronegative groups. A neighbor-joining tree between our cohorts and other populations was constructed based on allele frequencies of HLA-A and HLA-B loci. We identified 58 HLA-A, 75 HLA-B, and 32 HLA-Cw distinct alleles from our cohort and no novel alleles. The frequency of HLA-B*5201 and A*0301 was significantly higher in the Han HIV-1 negative group. The frequency of HLA-B*5101 was significantly higher in the Uyghur HIV-1 negative group. We observed statistically significant increases in expectation-maximization (EM) algorithm predicted haplotype frequencies of HLA-A*0201-B*5101 in the Uyghur HIV-1 negative group, and of Cw*0304-B*4001 in the Han HIV-1 negative group. The B62s supertype frequency was found to be significantly higher in the Han HIV-1 negative group than in the Han HIV-1 positive group.

Conclusions

At the four-digit level, several HLA class I alleles and haplotypes were associated with lower HIV-1 susceptibility. Homogeneity of HLA class I and Bw4/Bw6 heterozygosity were not associated with HIV-1 susceptibility in our cohort. These observations contribute to the Chinese HLA database and could prove useful in the development of HIV-1 vaccine candidates.  相似文献   

7.
Severe acute respiratory syndrome (SARS) is a viral respiratory illness caused by a novel coronavirus (SARS-CoV), which emerged as a pandemic in 2003. The mechanism of the immune reaction initiated by SARS-CoV still remains unclear. Here we aimed to describe the genetic patterns of high-resolution HLA-A, -B, -C, -DRB1, and -DQB1, loci in recovered SARS patients from Beijing and examine the association between HLA genes and susceptibility or resistance to SARS. A total of 70 recovered Chinese Han SARS patients were recruited to donate convalescent plasma in 2003. HLA high-resolution typing was carried out using sequence based typing (SBT). Allele frequencies were calculated by direct counting, and were compared with the frequencies of HLA alleles of donors recruited by the China Marrow Donor Program between 2002 and 2015 using Fisher''s exact test. Significance of association was defined according to the Bonferroni method for multiple comparisons. We observed 20, 35, 21, 25, and 17 alleles respectively at HLA-A, -B, -C, -DRB1, and -DQB1 loci among the 70 recovered patients. We identified 12 alleles (HLA-A*02:10, -A*02:93, -A*03:02, -B*08:01, -B*15:152, -B*37:01, -DRB1*10:01, -DRB1*11:03, -DRB1*14:10, -DRB1*14:12, -DRB1*15:02, and -DQB1*05:10) showing a nominal association with SARS (P<0.05), but none remained significant after Bonferroni correction. The study suggests that high-resolution HLA alleles are unlikely to contribute significantly to the susceptibility or resistance to SARS-CoV infection in the northern Chinese population.  相似文献   

8.
9.

AIM:

Distribution of HLA class I and II alleles and haplotype was studied in Pakistani population and compared with the data reported for Caucasoid, Africans, Orientals and Arab populations.

MATERIALS AND METHODS:

HLA class I and II polymorphisms in 1000 unrelated Pakistani individuals was studied using sequence-specific primers and polymerase chain reaction and assay.

RESULTS:

The most frequent class I alleles observed were A*02, B*35 and CW*07, with frequencies of 19.2, 13.7 and 20%, respectively. Fifteen distinct HLA-DRB1 alleles and eight HLA-DQB1 alleles were recognized. The most frequently observed DRB1 alleles which represented more than 60% of the subjects were DRB1 *03, *07, *11 and *15. The rare DRB1 alleles detected in this study were HLADRB1 *08 and *09, having frequencies of 0.9 and 1.7%, respectively. In addition, at DRB1-DQB1 loci there were 179 different haplotypes and 285 unique genotypes and the most common haplotype was DRB1*15-DQB1*06 which represented 17% of the total DRB1-DQB1 haplotypes. In our population, haplotype A*33-B*58-Cw*03 comprised 2.8% of the total class I haplotypes observed. This haplotype was seen only in the oriental populations and has not been reported in the African or European Caucasoid.

CONCLUSION:

Our study showed a close similarity of HLA class I and II alleles with that of European Caucasoid and Orientals. In Pakistani population, two rare loci and three haplotypes were identified, whereas haplotypes characteristic of Caucasians, Africans and Orientals were also found, suggesting an admixture of different races due to migration to and from this region.  相似文献   

10.

Introduction

According to genome wide association (GWA) studies as well as candidate gene approaches, Behçet’s disease (BD) is associated with human leukocyte antigen (HLA)-A and HLA-B gene regions. The HLA-B51 has been consistently associated with the disease, but the role of other HLA class I molecules remains controversial. Recently, variants in non-HLA genes have also been associated with BD. The aims of this study were to further investigate the influence of the HLA region in BD and to explore the relationship with non-HLA genes recently described to be associated in other populations.

Methods

This study included 304 BD patients and 313 ethnically matched controls. HLA-A and HLA-B low resolution typing was carried out by PCR-SSOP Luminex. Eleven tag single nucleotide polymorphisms (SNPs) located outside of the HLA-region, previously described associated with the disease in GWA studies and having a minor allele frequency in Caucasians greater than 0.15 were genotyped using TaqMan assays. Phenotypic and genotypic frequencies were estimated by direct counting and distributions were compared using the χ2 test.

Results

In addition to HLA-B*51, HLA-B*57 was found as a risk factor in BD, whereas, B*35 was found to be protective. Other HLA-A and B specificities were suggestive of association with the disease as risk (A*02 and A*24) or protective factors (A*03 and B*58). Regarding the non-HLA genes, the three SNPs located in IL23R and one of the SNPs in IL10 were found to be significantly associated with susceptibility to BD in our population.

Conclusion

Different HLA specificities are associated with Behçet’s disease in addition to B*51. Other non-HLA genes, such as IL23R and IL-10, play a role in the susceptibility to the disease.  相似文献   

11.
HLA-A, -B and -DRB1 allele frequencies and their haplotype frequencies in 21,918 Chinese residents living in Liaoning Province, who were registered as volunteer donors of China Marrow Donor Registry, were investigated. They are composed of 93.37% Han Chinese, 5.1% Manchus, 0.57% Mongols, 0.46% Hui persons, 0.29% Koreans and 0.14% Xibe ethnic group. In total eighteen different HLA-A alleles, forty-eight different HLA-B alleles and fourteen different HLA-DRB1 alleles have been identified. Their frequencies are in agreement with the Hardy-Weinberg equilibrium. For Han Chinese in Liaoning, 1,534 different HLA-A-B-DRB1 haplotypes were identified, with a frequency of higher than 0.01%. A*30-B*13-DRB1*07, A*02-B*46-DRB1*09 and A*02-B*13-DRB1*12 are the most frequent haplotypes among Liaoning Han. While Liaoning Han, Liaoning Manchu, Liaoning Mongol, Liaoning Hui and Liaoning Korean share the northern Han characteristic haplotypes, all minority ethnic groups with the exception of Liaoning Manchu have developed their own unique HLA profiles. This dataset characterizes the HLA allele and haplotype frequencies in the Liaoning area and suggests that it is different from those in other parts of China and ethnic groups, which implicates transplant donor searching strategies and studies on population genetics.  相似文献   

12.
A significant association between HFE gene mutations and the HLA-A*03-B*07 and HLA-A*29-B*44 haplotypes has been reported in the Spanish population. It has been proposed that these mutations are probably connected with Celtic and North African ancestry, respectively. We aimed to find the possible ancestral association between HLA alleles and haplotypes associated with the HFE gene (C282Y and H63D) mutations in 214 subjects from Antioquia, Colombia. These were 18 individuals with presumed hereditary hemochromatosis (“HH”) and 196 controls. The HLA-B*07 allele was in linkage disequilibrium (LD) with C282Y, while HLA-A*23, A*29, HLA-B*44, and B*49 were in LD with H63D. Altogether, our results show that, although the H63D mutation is more common in the Antioquia population, it is not associated with any particular HLA haplotype, whereas the C282Y mutation is associated with HLA-A*03-B*07, this supporting a northern Spaniard ancestry.  相似文献   

13.
IntroductionHuman leukocyte antigen (HLA) polymorphism studies in Systemic Sclerosis (SSc) have yielded variable results. These studies need to consider the genetic admixture of the studied population. Here we used our previously reported definition of genetic admixture of Mexicans using HLA class I and II DNA blocks to map genetic susceptibility to develop SSc and its complications.MethodsWe included 159 patients from a cohort of Mexican Mestizo SSc patients. We performed clinical evaluation, obtained SSc-associated antibodies, and determined HLA class I and class II alleles using sequence-based, high-resolution techniques to evaluate the contribution of these genes to SSc susceptibility, their correlation with the clinical and autoantibody profile and the prevalence of Amerindian, Caucasian and African alleles, blocks and haplotypes in this population.ResultsOur study revealed that class I block HLA-C*12:03-B*18:01 was important to map susceptibility to diffuse cutaneous (dc) SSc, HLA-C*07:01-B*08:01 block to map the susceptibility role of HLA-B*08:01 to develop SSc, and the C*07:02-B*39:05 and C*07:02-B*39:06 blocks to map the protective role of C*07:02 in SSc. We also confirmed previous associations of HLA-DRB1*11:04 and –DRB1*01 to susceptibility to develop SSc. Importantly, we mapped the protective role of DQB1*03:01 using three Amerindian blocks. We also found a significant association for the presence of anti-Topoisomerase I antibody with HLA-DQB1*04:02, present in an Amerindian block (DRB1*08:02-DQB1*04:02), and we found several alleles associated to internal organ damage. The admixture estimations revealed a lower proportion of the Amerindian genetic component among SSc patients.ConclusionThis is the first report of the diversity of HLA class I and II alleles and haplotypes Mexican patients with SSc. Our findings suggest that HLA class I and class II genes contribute to the protection and susceptibility to develop SSc and its different clinical presentations as well as different autoantibody profiles in Mexicans.  相似文献   

14.
We investigated the polymorphism of human leukocyte antigens (HLA) and Duffy erythrocyte antigens in chronic kidney disease (CKD) patients in southern Brazil. One hundred and eighty-three CKD patients, over 18 years old, on hemodialysis, were included. HLA-A, -B and -DRB1 typing was performed using the LABType®SSO (One Lambda, Inc.). Duffy phenotypes were determined by gel column agglutination using anti-Fya and anti-Fyb monoclonal anti-sera. The patients'' predominant ages ranged between 51 and 70 years (43%) and the predominant gender, ethnic group and dialysis period were, respectively, male (62%), white (62%) and 1–3 years (40%). The highest and lowest frequencies of Duffy phenotypes were Fy(a+b+) and Fy(a−b−), respectively. Nineteen HLA-A, 30 HLA-B and 13 HLA-DRB1 allele groups were identified. The most frequent HLA allele groups were HLA-A*01, -A*02, -A*03, -A*11, -A*24; HLA-B*07, -B*15, -B*35, -B*44, -B*51; HLA-DRB1*03, -DRB1*04, -DRB1*07, -DRB1*11 and -DRB1*13. Statistically significant differences were observed in the Duffy and HLA polymorphisms compared between CKD patients and healthy subjects. The Fy(a+b−) phenotype (p<0.0001, OR = 2.56, 95% CI = 1.60–4.07) was the most frequent in the patients (p<0.05), and the Fy(a+b+) phenotype (p = 0.0039, OR = 1.71, 95% CI = 1.18–2.51) was the most frequent in the healthy subjects in the same region of Paraná state (p<0.05). Regarding HLA, the HLA-B*42, -B*45, -B*51 and -DRB1*03 allele groups were the most frequent in the patients (p<0.05), and the HLA-B*44 allele group was the most frequent in the healthy subjects in the same region of Brazil (p<0.05). The polymorphism of these two markers among CKD patients in southern Brazil and healthy subjects of other studies, suggests that these markers might be involved with CKD development. Further studies should be undertaken to analyze the markers'' influence on CKD and the long-term results from kidney transplantation.  相似文献   

15.
Conquest of Granada Muslim Kingdom (1492 AD) finished with Muslim occupation; they were mostly North African Berbers who had reached Iberia by 711 AD. A politics of Iberian Christianization followed after this date: Jewish were expelled in 1492 and Moriscos (Spaniards practicing Muslim religion or speaking Arab) were expelled from all Spanish territory on 1609 AD. Las Alpujarras is a southern Spain mountainous secluded region, which underwent a repopulation from North Spain and a specific Muslim (Moriscos)–Christian war took place according to historical records. Both Las Alpujarras repopulation by northern Iberians and Moriscos expulsion success have been debated and are regarded as non-clarified episodes. In this study, we have addressed the question whether the repopulation succeeded by determining HLA genes of present day Las Alpujarras inhabitants and compared with those of other Mediterranean populations HLA frequencies and genealogies. HLA frequencies show ambiguous results because of extant HLA similar gene frequencies there exist in North Africa and Spain. This is reflected by the finding of North and South western Mediterraneans close relatedness of HLA dendrograms and correspondence analyses. However, the genealogical study of extended HLA haplotypes particularly Alpujarran high frequency of HLA-A29-B44-DRB1*0701-DQA1*02-DQB1*02 (not found in Algerians but frequent in North and Central Spain) and Alpujarran low frequency extended haplotype HLA-A3-B7-DRB1*1501-DQA1*0102-DQB1*0602 (frequent in North Europe) reveals that a significant HLA gene flow from North Spain is observed in present day Alpujarrans: both haplotypes are characteristic of North Spain and North Europe, respectively. This may indicate that enforced Alpujarran repopulation from North Spain may have been a success, which was started by Spanish King Philip II in 1571 AD.  相似文献   

16.
Shen CM  Zhu BF  Deng YJ  Ye SH  Yan JW  Yang G  Wang HD  Qin HX  Huang QZ  Zhang JJ 《PloS one》2010,5(11):e13458

Background

Previous studies indicate that the frequency distributions of HLA alleles and haplotypes vary from one ethnic group to another or between the members of the same ethnic group living in different geographic areas. It is necessary and meaningful to study the high-resolution allelic and haplotypic distributions of HLA loci in different groups.

Methodology/Principal Findings

High-resolution HLA typing for the Uyghur ethnic minority group using polymerase chain reaction-sequence-based-typing method was first reported. HLA-A, -B and -DRB1 allelic distributions were determined in 104 unrelated healthy Uyghur individuals and haplotypic frequencies and linkage disequilibrium parameters for HLA loci were estimated using the maximum-likelihood method. A total of 35 HLA-A, 51 HLA-B and 33 HLA-DRB1 alleles were identified at the four-digit level in the population. High frequency alleles were HLA-A*1101 (13.46%), A*0201 (12.50%), A*0301 (10.10%); HLA-B*5101(8.17%), B*3501(6.73%), B*5001 (6.25%); HLA-DRB1*0701 (16.35%), DRB1*1501 (8.65%) and DRB1*0301 (7.69%). The two-locus haplotypes at the highest frequency were HLA-A*3001-B*1302 (2.88%), A*2402-B*5101 (2.86%); HLA-B*5001-DRB1*0701 (4.14%) and B*0702-DRB1*1501 (3.37%). The three-locus haplotype at the highest frequency was HLA-A*3001-B*1302-DRB1*0701(2.40%). Significantly high linkage disequilibrium was observed in six two-locus haplotypes, with their corresponding relative linkage disequilibrium parameters equal to 1. Neighbor-joining phylogenetic tree between the Uyghur group and other previously reported populations was constructed on the basis of standard genetic distances among the populations calculated using the four-digit sequence-level allelic frequencies at HLA-A, HLA-B and HLA-DRB1 loci. The phylogenetic analyses reveal that the Uyghur group belongs to the northwestern Chinese populations and is most closely related to the Xibe group, and then to Kirgiz, Hui, Mongolian and Northern Han.

Conclusions/Significance

The present findings could be useful to elucidate the genetic background of the population and to provide valuable data for HLA matching in clinical bone marrow transplantation, HLA-linked disease-association studies, population genetics, human identification and paternity tests in forensic sciences.  相似文献   

17.
We examined the effect of HLA class I haplotypes on HIV-1 seroconversion and disease progression in the Pumwani sex worker cohort. This study included 595 HIV-1 positive patients and 176 HIV negative individuals. HLA-A, -B, and -C were typed to 4-digit resolution using sequence-based typing method. HLA class I haplotype frequencies were estimated using PyPop 32-0.6.0. The influence of haplotypes on time to seroconversion and CD4+ T cell decline to <200 cells/mm3 were analyzed by Kaplan-Meier analysis using SPSS 13.0. Before corrections for multiple comparisons, three 2-loci haplotypes were significantly associated with faster seroconversion, including A*23∶01-C*02∶02 (p = 0.014, log rank(LR) = 6.06, false-discovery rate (FDR) = 0.056), B*42∶01-C*17∶01 (p = 0.01, LR = 6.60, FDR = 0.08) and B*07∶02-C*07∶02 (p = 0.013, LR = 6.14, FDR = 0.069). Two A*74∶01 containing haplotypes, A*74∶01-B*15∶03 (p = 0.047, LR = 3.942, FDR = 0.068) and A*74∶01-B*15∶03-C*02∶02 (p = 0.045, LR = 4.01, FDR = 0.072) and B*14∶02-C*08∶02 (p = 0.021, LR = 5.36, FDR = 0.056) were associated with slower disease progression. Five haplotypes, including A*30∶02-B*45∶01 (p = 0.0008, LR = 11.183, FDR = 0.013), A*30∶02-C*16∶01 (p = 0.015, LR = 5.97, FDR = 0.048), B*53∶01-C*04∶01 (p = 0.010, LR = 6.61, FDR = 0.08), B*15∶10-C*03∶04 (p = 0.031, LR = 4.65, FDR = 0.062), and B*58∶01-C*03∶02 (p = 0.037, LR = 4.35, FDR = 0.066) were associated with faster progression to AIDS. After FDR corrections, only the associations of A*30∶02-B*45∶01 and A*30∶02-C*16∶01 with faster disease progression remained significant. Cox regression and deconstructed Kaplan-Meier survival analysis showed that the associations of haplotypes of A*23∶01-C*02∶02, B*07∶02-C*07∶02, A*74∶01-B*15∶03, A*74∶01-B*15∶03-C*02∶02, B*14∶02-C*08∶02 and B*58∶01-C*03∶02 with differential seroconversion or disease progression are due to the dominant effect of a single allele within the haplotypes. The true haplotype effect was observed with A*30∶02-B*45∶01, A*30∶02-C*16∶02, B*53∶01-C*04∶01 B*15∶10-C*03∶04, and B*42∶01-C*17∶01. In these cases, the presence of both alleles accelerated the disease progression or seroconversion than any of the single allele within the haplotypes. Our study showed that the true effects of HLA class I haplotypes on HIV seroconversion and disease progression exist and the associations of HLA class I haplotype can also be due to the dominant effect of a single allele within the haplotype.  相似文献   

18.
ObjectiveSevere fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by a tick-borne bunyavirus (SFTSV) in East Asian countries. The role of human leukocyte antigen (HLA) in resistance and susceptibility to SFTSV is not known. We investigated the correlation of HLA locus A, B and DRB1 alleles with the occurrence of SFTS.MethodsA total of 84 confirmed SFTS patients (patient group) and 501 unrelated non-SFTS patients (healthy individuals as control group) from Shandong Province were genotyped by PCR-sequence specific oligonucleotide probe (PCR-SSOP) for HLA-A, B and DRB1 loci.Allele frequency was calculated and compared using χ2 test or the Fisher''s exact test. A corrected P value was calculated with a bonferronis correction. Odds Ratio (OR) and 95% confidence intervals (CI) were calculated by Woolf’s method.ResultsA total of 11 HLA-A, 23 HLA-B and 12 HLA-DRB1 alleles were identified in the patient group, whereas 15 HLA-A, 30 HLA-B and 13 HLA-DRB1 alleles were detected in the control group. The frequencies of A*30 and B*13 in the SFTS patient group were lower than that in the control group (P = 0.0341 and 0.0085, Pc = 0.5115 and 0.252). The ORs of A*30 and B*13 in the SFTS patient group were 0.54 and 0.49, respectively. The frequency of two-locus haplotype A*30-B*13 was lower in the patient group than in the control group(5.59% versus 12.27%, P = 0.037,OR = 0.41, 95%CI = 0.18–0.96) without significance(Pc>0.05). A*30-B*13-DRB1*07 and A*02-B*15-DRB1*04 had strong associations with SFTS resistance and susceptibility respectively (Pc = 0.0412 and 0.0001,OR = 0.43 and 5.07).ConclusionThe host HLA class I polymorphism might play an important role with the occurrence of SFTS. Negative associations were observed with HLA-A*30, HLA-B*13 and Haplotype A*30-B*13, although the associations were not statistically significant. A*30-B*13-DRB1*07 had negative correlation with the occurrence of SFTS; in contrast, haplotype A*02-B*15-DRB1*04 was positively correlated with SFTS.  相似文献   

19.
The aim of this study was to examine frequencies and haplotypic associations of HLA class II alleles in autochthonous population of Gorski kotar (Croatia). HLA-DRB1, -DQA1 and -DQB1 alleles were determined by DNA based PCR typing in 63 unrelated inhabitants from Gorski kotar whose parents and ancestors were born and lived in tested area for at least over four generations. A total of 13 HLA-DRB1, 12 DQA1 and 14 DQB1 alleles were identified. The most frequent HLA class II genes in Gorski kotar population are: HLA-DRB1*13 (af = 0.150), -DRB1*03 (af = 0.142), -DRB1*07 (af = 0.119), and -DRB1*11 (af = 0.119), HLA-DQA1*0501 (af = 0.278), -DQA1*0102 (af = 0.183), -DQA1*0201 (af = 0.127) and HLA-DQB1*0301 (af = 0.157), -DQB1*0201 (af = 0.139), -DQB1*0501 (af = 0.111). We have identified 24 HLA class II three-locus haplotypes. The most common haplotypes in Gorski kotar population are DRB1*03-DQA* 0501-DQB1*0201 (0.120), DRB1*11-DQA1*0501-DQB1*0301 (0.111) and DRB1*07-DQA1*0201-DQB1*0202 (0.094). The allelic frequencies and populations distance dendrogram revealed the closest relationships of Gorski kotar population with Slovenians, Germans, Hungarians and general Croatian population, which is the result of turbulent migrations within this microregion during history.  相似文献   

20.

Background

Kazakhstan has been inhabited by different populations, such as the Kazakh, Kyrgyz, Uzbek and others. Here we investigate allelic and haplotypic polymorphisms of human leukocyte antigen (HLA) genes at DRB1, DQA1 and DQB1 loci in the Kazakh ethnic group, and their genetic relationship between world populations.

Methodology/Principal Findings

A total of 157 unrelated Kazakh ethnic individuals from Astana were genotyped using sequence based typing (SBT-Method) for HLA-DRB1, -DQA1 and -DQB1 loci. Allele frequencies, neighbor-joining method, and multidimensional scaling analysis have been obtained for comparison with other world populations. Statistical analyses were performed using Arlequin v3.11. Applying the software PAST v. 2.17 the resulting genetic distance matrix was used for a multidimensional scaling analysis (MDS). Respectively 37, 17 and 19 alleles were observed at HLA-DRB1, -DQA1 and -DQB1 loci. The most frequent alleles were HLA-DRB1*07:01 (13.1%), HLA-DQA1*03:01 (13.1%) and HLA-DQB1*03:01 (17.6%). In the observed group of Kazakhs DRB1*07:01-DQA1*02:01-DQB1*02:01 (8.0%) was the most common three loci haplotype. DRB1*10:01-DQB1*05:01 showed the strongest linkage disequilibrium. The Kazakh population shows genetic kinship with the Kazakhs from China, Uyghurs, Mongolians, Todzhinians, Tuvinians and as well as with other Siberians and Asians.

Conclusions/Significance

The HLA-DRB1, -DQA1and -DQB1 loci are highly polymorphic in the Kazakh population, and this population has the closest relationship with other Asian and Siberian populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号