首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Geostatistical techniques were applied and a series of spatial indicators were calculated (occupation, aggregation, location, dispersion, spatial autocorrelation and overlap) to characterize the spatial distributions of European anchovy and sardine during summer. Two ecosystems were compared for this purpose, both located in the Mediterranean Sea: the Strait of Sicily (upwelling area) and the North Aegean Sea (continental shelf area, influenced by freshwater). Although the biomass of anchovy and sardine presented high interannual variability in both areas, the location of the centres of gravity and the main spatial patches of their populations were very similar between years. The size of the patches representing the dominant part of the abundance (80%) was mostly ecosystem- and species-specific. Occupation (area of presence) appears to be shaped by the extent of suitable habitats in each ecosystem whereas aggregation patterns (how the populations are distributed within the area of presence) were species-specific and related to levels of population biomass. In the upwelling area, both species showed consistently higher occupation values compared to the continental shelf area. Certain characteristics of the spatial distribution of sardine (e.g. spreading area, overlapping with anchovy) differed substantially between the two ecosystems. Principal component analysis of geostatistical and spatial indicators revealed that biomass was significantly related to a suite of, rather than single, spatial indicators. At the spatial scale of our study, strong correlations emerged between biomass and the first principal component axis with highly positive loadings for occupation, aggregation and patchiness, independently of species and ecosystem. Overlapping between anchovy and sardine increased with the increase of sardine biomass but decreased with the increase of anchovy. This contrasting pattern was attributed to the location of the respective major patches combined with the specific occupation patterns of the two species. The potential use of spatial indices as auxiliary stock monitoring indicators is discussed.  相似文献   

2.
It is widely believed that environmental variability is the main cause for fluctuations in commercially exploited small pelagic fish populations around the world. Nevertheless, density-dependent factors also can drive population dynamics. In this paper, we analyzed thirteen years of a relative abundance index of two clupeoids fish populations coexisting in the central-south area off Chile, namely the common sardine, Strangomera bentincki, and anchovy, Engraulis ringens. We applied the classical diagnostic tools of time series analysis to the observed time-series. Also, the realized per capita population growth rate was studied with the aim of detecting the feedback structure that is characterizing the population dynamics of the two species. The analysis suggests that population fluctuations of the two species have an important density-dependent component, displaying first-order (direct density-dependent) and second-order (delayed density-dependent) simultaneously. The density-dependent component explained 70.5 and 55.6 % of the realized per capita population growth rate of common sardine and anchovy, respectively. The deterministic skeleton model showed an asymptotic convergence to equilibrium density. In presence of a stochastic environment, fluctuations were reproduced for the species showing a component of fluctuation with a period of 4 year. The intrinsic dynamics of each species is typical of interacting species resulting from trophic interactions. It is postulated that the second-order dynamics of S. bentincki and E. ringens in central-south Chile, may be the result from interactions with a specialist predator (the fishing fleet), interacting with exogenous environmental factors.  相似文献   

3.
A number of scientific papers in the last few years singled out the influence of environmental conditions on the spatial distribution of fish species, highlighting the need for the fisheries scientific community to investigate, besides biomass estimates, also the habitat selection of commercially important fish species. The Mediterranean Sea, although generally oligotrophic, is characterized by high habitat variability and represents an ideal study area to investigate the adaptive behavior of small pelagics under different environmental conditions. In this study the habitat selection of European anchovy Engraulis encrasicolus and European sardine Sardina pilchardus is analyzed in two areas of the Mediterranean Sea that largely differentiate in terms of environmental regimes: the Strait of Sicily and the North Aegean Sea. A number of environmental parameters were used to investigate factors influencing anchovy and sardine habitat selection. Acoustic surveys data, collected during the summer period 2002–2010, were used for this purpose. The quotient analysis was used to identify the association between high density values and environmental variables; it was applied to the entire dataset in each area in order to identify similarities or differences in the “mean” spatial behavioral pattern for each species. Principal component analysis was applied to selected environmental variables in order to identify those environmental regimes which drive each of the two ecosystems. The analysis revealed the effect of food availability along with bottom depth selection on the spatial distribution of both species. Furthermore PCA results highlighted that observed selectivity for shallower waters is mainly associated to specific environmental processes that locally increase productivity. The common trends in habitat selection of the two species, as observed in the two regions although they present marked differences in hydrodynamics, seem to be driven by the oligotrophic character of the study areas, highlighting the role of areas where the local environmental regimes meet ‘the ocean triad hypothesis’.  相似文献   

4.
The anchovy/sardine complex is an important fishery resource in some of the largest upwelling systems in the world. Synchronous, but out of phase, fluctuations of the two species in distant parts of the oceans have prompted a number of studies dedicated to determining the phenomena, atmospheric and oceanic, responsible for the observed synchronicity and the biological mechanisms behind the population changes of the two species. Anchovy and sardine are of high commercial value for the fishing sector in Greece; this study investigates the impact of large-scale climatic indices on the anchovy/sardine complex in the Greek seas using fishery catches as a proxy for fish productivity. Time series of catches for both species were analysed for relationships with teleconnection indices and local environmental variability. The connection between the teleconnection indices and local weather/oceanic variation was also examined in an effort to describe physical mechanisms that link large-scale atmospheric patterns with anchovy and sardine. The West African Summer Monsoon, East Atlantic Jet and Pacific–North American (PNA) pattern exhibit coherent relationships with the catches of the two species. The first two aforementioned patterns are prominent atmospheric modes of variability during the summer months when sardine is spawning and anchovy juveniles are growing. PNA is related with El Niño Southern Oscillation events. Sea Surface Temperature (SST) appears as a significant link between atmospheric and biological variability either because higher temperatures seem to be favouring sardine growth or because lower temperatures, characteristic of productivity-enhancing oceanic features, exert a positive influence on both species. However at a local scale, other parameters such as wind and mesoscale circulation describe air–sea variability affecting the anchovy/sardine complex. These relationships are non-linear and in agreement with results of previous studies stressing the importance of optimal environmental windows. The results also show differences in the response of the two species to environmental forcing and possible interactions between the two species. The nature of these phenomena, e.g., if the species interactions are direct through competition or indirect through the food web, remains to be examined.  相似文献   

5.
1. Synchronous fluctuations of geographically separated populations are in general explained by the Moran effect, i.e. a common influence on the local population dynamics of environmental variables that are correlated in space. Empirical support for such a Moran effect has been difficult to provide, mainly due to problems separating out effects of local population dynamics, demographic stochasticity and dispersal that also influence the spatial scaling of population processes. Here we generalize the Moran effect by decomposing the spatial autocorrelation function for fluctuations in the size of great tit Parus major and blue tit Cyanistes caeruleus populations into components due to spatial correlations in the environmental noise, local differences in the strength of density regulation and the effects of demographic stochasticity. 2. Differences between localities in the strength of density dependence and nonlinearity in the density regulation had a small effect on population synchrony, whereas demographic stochasticity reduced the effects of the spatial correlation in environmental noise on the spatial correlations in population size by 21.7% and 23.3% in the great tit and blue tit, respectively. 3. Different environmental variables, such as beech mast and climate, induce a common environmental forcing on the dynamics of central European great and blue tit populations. This generates synchronous fluctuations in the size of populations located several hundred kilometres apart. 4. Although these environmental variables were autocorrelated over large areas, their contribution to the spatial synchrony in the population fluctuations differed, dependent on the spatial scaling of their effects on the local population dynamics. We also demonstrate that this effect can lead to the paradoxical result that a common environmental variable can induce spatial desynchronization of the population fluctuations. 5. This demonstrates that a proper understanding of the ecological consequences of environmental changes, especially those that occur simultaneously over large areas, will require information about the spatial scaling of their effects on local population dynamics.  相似文献   

6.
We investigated the environmental drivers of larval abundance of anchovy Engraulis encrasicolus and sardine Sardinops sagax in Algoa Bay, Eastern Cape (South Africa). This study comprised a pre-drought post-drought time period, comparing the responses of the fish larvae to different factors before and after the drought. The current study presents, for the first time, which environmental variables are affecting the anchovy and sardine larvae populations in the region. Easterly wind speed and zooplankton density were the only environmental variables that presented a significant change between the pre- and post-drought periods, increasing after the drought. Generalized additive models (GAMs) were used in order to explore the effects that environmental factors might have in the abundance of anchovy and sardine larvae in Algoa Bay. Specifically, the GAM that best explained the deviance of the anchovy larvae dynamics included the covariates rainfall, easterly wind speed, Chl a concentration, sardine larvae abundance and the interactions SST*Chla and sard*SST. The GAM best explaining sardine larvae abundance included only the easterly wind speed as a covariate. This model showed that there was a positive relationship between the higher values of wind speed and sardine larvae abundance.  相似文献   

7.
In the upwelling zone of the northeastern Pacific, cold nutrient-rich conditions alternate with warm nutrient-poor intervals on timescales ranging from months to millennia. In this setting, the abundances of Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) fluctuate by several orders of magnitude, with sardine dominating during warm conditions and anchovy dominating during cool conditions. Two population models can explain the response of these fishes to adverse conditions. Under the basin model, species distributions contract to a central (optimal) range during population crashes. Expectations of this model may include a single range-wide population with a decline in genetic diversity on both sides of a central refuge. In contrast, the self-recruitment model invokes a series of local oceanographic domains that maintain semi-isolated subpopulations. During adverse conditions, some subpopulations cannot complete the life cycle within the local environment and are extirpated. Expectations of this model include some degree of population genetic structure and no clear gradient in genetic diversity. We examined mitochondrial DNA cytochrome b sequences to assess these competing models for anchovy (N = 196; 539 bp) and sardine (N = 107; 425 bp). The mitochondrial DNA gene genealogies are shallow but diverse for both species. Haplotype frequencies are homogeneous among subpopulations, but genetic diversities peak for both species along Baja California and adjacent southern California. Mismatch distributions and Tajima's D-values reveal distinctive signatures of population bottlenecks and expansions. Sardine haplotypes coalesce at approximately 241,000 years bp, with an initial female effective population size Nf0 = 0 followed by exponential growth to Nf1 = 115 million. Anchovy haplotypes coalesce at approximately 282,000 years bp, with an initial population size of Nf0 = 14,000, followed by exponential growth to Nf1 = 2.3 million. These results indicate a founder event for sardine and a severe population decline for anchovy in the California Current during the late Pleistocene. Overall, these data support the basin model on decadal timescales, although local recruitment may dominate on shorter timescales.  相似文献   

8.
Large, migratory predators are often cited as sentinel species for ecosystem processes and climate‐related changes, but their utility as indicators is dependent upon an understanding of their response to environmental variability. Documentation of the links between climate variability, ecosystem change and predator dynamics is absent for most top predators. Identifying species that may be useful indicators and elucidating these mechanistic links provides insight into current ecological dynamics and may inform predictions of future ecosystem responses to climatic change. We examine humpback whale response to environmental variability through stable isotope analysis of diet over a dynamic 20‐year period (1993–2012) in the California Current System (CCS). Humpback whale diets captured two major shifts in oceanographic and ecological conditions in the CCS. Isotopic signatures reflect a diet dominated by krill during periods characterized by positive phases of the North Pacific Gyre Oscillation (NPGO), cool sea surface temperature (SST), strong upwelling and high krill biomass. In contrast, humpback whale diets are dominated by schooling fish when the NPGO is negative, SST is warmer, seasonal upwelling is delayed and anchovy and sardine populations display increased biomass and range expansion. These findings demonstrate that humpback whales trophically respond to ecosystem shifts, and as a result, their foraging behavior is a synoptic indicator of oceanographic and ecological conditions across the CCS. Multi‐decadal examination of these sentinel species thus provides insight into biological consequences of interannual climate fluctuations, fundamental to advancing ecosystem predictions related to global climate change.  相似文献   

9.
For the first time an international acoustic survey dataset covering three decades was used to investigate the factors shaping the spatial and temporal patterns in the condition of sprat and herring in the Baltic Proper. Generalized additive models showed that the spatial and temporal fluctuations in sprat density have been the main drivers of the spatio-temporal changes of both sprat and herring condition, evidencing intra- and inter-specific density dependence mediated by the size and distribution of the sprat population. Salinity was also an important predictor of herring condition, whereas temperature explained only a minor part of sprat model deviance. Herring density was an additional albeit weak significant predictor for herring condition, evidencing also intra-specific density dependence within the herring population. For both species, condition was high and similar in all areas of the Baltic Proper until the early 1990s, coincident with low sprat densities. Afterwards, a drop in condition occurred and a clear south–north pattern emerged. The drop in condition after the early 1990s was stronger in the northern areas, where sprat population increased the most. We suggest that the increase in sprat density in the northern areas, and the consequent spatial differentiation in clupeid condition, have been triggered by the almost total disappearance of the predator cod from the northern Baltic Proper. This study provides a step forward in understanding clupeid condition in the Baltic Sea, presenting evidence that density-dependent mechanisms also operate at the spatial scale within stock units. This stresses the importance of spatio-temporal considerations in the management of exploited fish.  相似文献   

10.
11.
Social learning can be fundamental to cohesive group living, and schooling fishes have proven ideal test subjects for recent work in this field. For many species, both demographic factors, and inter‐ (and intra‐) generational information exchange are considered vital ingredients in how movement decisions are reached. Yet key information is often missing on the spatial outcomes of such decisions, and questions concerning how migratory traditions are influenced by collective memory, density‐dependent and density‐independent processes remain open. To explore these issues, we focused on Atlantic herring Clupea harengus, a long‐lived, dense‐schooling species of high commercial importance, noted for its unpredictable shifts in winter distribution, and developed a series of Bayesian space‐time occurrence models to investigate wintering dynamics over 23 yr, using point‐referenced fishery and survey records from Icelandic waters. We included covariates reflecting local‐scale environmental factors, temporally‐lagged prey biomass and recent fishing activity, and through an index capturing distributional persistence over time, derived two proxies for spatial memory of past wintering sites. The previous winter's occurrence pattern was a strong predictor of the present pattern, its influence increasing with adult population size. Although the mechanistic underpinnings of this result remain uncertain, we suggest that a ‘wisdom of the crowd’ dynamic may be at play, by which navigational accuracy towards traditional wintering sites improves in larger and/or denser, better synchronized schools. Wintering herring also preferred warmer, fresher, moderately stratified waters of lower velocity, close to hotspots of summer zooplankton biomass, our results indicative of heightened environmental sensitivity in younger cohorts. Incorporating spatiotemporal correlation structure and time‐varying regression coefficients improved model performance, and validation tests on independent observations one‐year ahead illustrate the potential of uniting demographic information and non‐stationary models to quantify both the strength of collective memory in animal groups and its relevance for the spatial management of populations.  相似文献   

12.
In marine ecosystems top predator populations are shaped by environmental factors affecting their prey abundance. Coupling top predators’ population studies with independent records of prey abundance suggests that prey fluctuations affect fecundity parameters and abundance of their predators. However, prey may be abundant but inaccessible to their predators and a major challenge is to determine the relative importance of prey accessibility in shaping seabird populations. In addition, disentangling the effects of prey abundance and accessibility from the effects of prey removal by fisheries, while accounting for density dependence, remains challenging for marine top predators. Here, we investigate how climate, population density, and the accessibility and removal of prey (the Peruvian anchovy Engraulis ringens) by fisheries influence the population dynamics of the largest sedentary seabird community (≈ 4 million individuals belonging to guanay cormorant Phalacrocorax bougainvillii, Peruvian booby Sula variegata and Peruvian pelican Pelecanus thagus) of the northern Humboldt Current System over the past half‐century. Using Gompertz state–space models we found strong evidence for density dependence in abundance for the three seabird species. After accounting for density dependence, sea surface temperature, prey accessibility (defined by the depth of the upper limit of the subsurface oxygen minimum zone) and prey removal by fisheries were retained as the best predictors of annual population size across species. These factors affected seabird abundance the current year and with year lags, suggesting effects on several demographic parameters including breeding propensity and adult survival. These findings highlight the effects of prey accessibility and fishery removals on seabird populations in marine ecosystems. This will help refine management objectives of marine ecosystems in order to ensure sufficient biomass of forage fish to avoid constraining seabird population dynamics, while taking into account of the effects of environmental variability.  相似文献   

13.
We performed a captive feeding experiment using California sea lions to assess biases associated with estimating pinniped diet using scats and spews. Sea lions were fed nine of their natural prey species: anchovy, sardine, Pacific mackerel, jack mackerel, hake, steelhead smolts, shortbelly rockfish, pink salmon, and market squid. Recovery percentages varied among prey species using otoliths and were improved for adult salmon and sardine using the all‐structure method. Numerical and graded length correction factors provided better estimates of number and size of prey consumed. Four models used to determine the proportions of prey species consumed by a sea lion population were tested. The all‐structure method and variable biomass reconstruction model, in conjunction with numerical and graded length correction factors, provided more accurate estimates than without. We provide numerical correction factors for all prey species, including correction factors for specific salmon bones: vertebrae, branchials, radials, teeth, gill rakers, and hypurals.  相似文献   

14.
The multispecies stock‐production model of Horbowy developed in 1996 was further extended to include the unexploited part of a stock. The model was then applied to simulate stock dynamics and species interactions of cod, herring, and sprat in the Baltic from 1982 to 2001. The model indicates that there have been large declines in cod and herring biomass over the past two decades and a strong increase in sprat biomass in the 1990s. Using the extended stock‐production model, the relative changes in stock biomass were similar to the changes derived using the age‐structured multispecies model, the multispecies virtual population analysis (MSVPA). However, the production model estimates of the average predation mortality of young cod and young sprat are much lower than those derived from MSVPA, although the estimates for young and adult herring and adult sprat are similar in both approaches. The estimates of food suitability show that the preferred food of adult cod is adult sprat and young herring, while the suitability of young sprat, young cod, and adult herring is much smaller. The simulations performed show that the multispecies production model, which is less data‐demanding than age‐structured MSVPA, can provide estimates of stock dynamics and species interactions that are largely consistent with those estimated by MSVPA. The quality of input data in terms of recruitment and fishing‐effort indices strongly impacts the reliability of the model's results.  相似文献   

15.
The Rhone river is the most important input to the Mediterranean Sea, responsible for 50% of the primary productivity of the Gulf of Lions. A highly variable amount of 1-23᎒6 t year-1 of terrestrial material is exported to the sea by the Rhone and stocked on the continental shelf for the most part. Soft-bottom communities off the Rhone delta were dominated by polychaetes both in species richness and abundance, and exhibited strong temporal fluctuations mainly related to flooding events. Floods caused pulses of organic matter followed, with different time lags, by peaks of polychaetes. Opportunistic, short-lived species, such as Mediomastus sp. and Aricidea claudiae, exhibited high short-term peaks in density and biomass a few months after flooding events. Conversely, long-lived species, such as Laonice cirrata and Sternaspis scutata, peaked in density and biomass with a time lag of 1-3 years, and their population increase lasted for a few years. The common sole, Solea solea, is a voracious predator of polychaetes which represent >80% of its prey. A positive correlation was found between the mean annual discharge of the Rhone river and the annual commercial landings of S. solea with a time lag of 5 years in the two fishing harbours (Sete and Martigues) located close to the Rhone delta. The long-term increase in food (i.e. polychaete density and biomass) after flooding events might favour the different stages of the sole life cycle, enhancing its population size for several years. Fluctuations of sole fishery yields in the Gulf of Lions could be influenced by climate, as the Rhone river flow is related to the North Atlantic Oscillation that drives precipitation over Western Europe.  相似文献   

16.
Natural populations experience environmental conditions that vary across space and over time. This variation is often correlated between localities depending on the geographical separation between them, and different species can respond to local environmental fluctuations similarly or differently, depending on their adaptation. How this emerging structure in environmental correlation (between-patches and between-species) affects spatial community dynamics is an open question. This paper aims at a general understanding of the interactions between the environmental correlation structure and population dynamics in spatial networks of local communities (metacommunities), by studying simple two-patch, two-species systems. Three different pairs of interspecific interactions are considered: competition, consumer–resource interaction, and host–parasitoid interaction. While the results paint a relatively complex picture of the effect of environmental correlation, the interaction between environmental forcing, dispersal, and local interactions can be understood via two mechanisms. While increasing between-patch environmental correlation couples immigration and local densities (destabilising effect), the coupling between local populations under increased between-species environmental correlation can either amplify or dampen population fluctuations, depending on the patterns in density dependence. This work provides a unifying framework for modelling stochastic metacommunities, and forms a foundation for a better understanding of population responses to environmental fluctuations in natural systems.  相似文献   

17.
Taylor's law says that the variance of population density of a species is proportional to a power of mean population density. Density–mass allometry says that mean population density is proportional to a power of mean biomass per individual. These power laws predict a third, variance–mass allometry: the variance of population density of a species is proportional to a power of mean biomass per individual. We tested these laws using 10 censuses of New Zealand mountain beech trees in 250 plots over 30 years at spatial scales from 5 m to kilometers. We found that: 1) a single‐species forest not disrupted by humans obeyed all three laws; 2) random sampling explained the parameters of Taylor's law at a large spatial scale in 8 of 10 censuses, but not at a fine spatial scale; 3) larger spatial scale increased the exponent of Taylor's law and decreased the exponent of variance–mass allometry (this is the first empirical demonstration that the latter exponent depends on spatial scale), but affected the exponent of density–mass allometry slightly; 4) despite varying natural disturbance, the three laws varied relatively little over the 30 years; 5) self‐thinning and recruiting plots had significantly different intercepts and slopes of density–mass allometry and variance–mass allometry, but the parameters of Taylor's law were not usually significantly affected; and 6) higher soil calcium was associated with higher variance of population density in all censuses but not with a difference in the exponent of Taylor's law, while elevation above sea level and soil carbon‐to‐nitrogen ratios had little effect on the parameters of Taylor's law. In general, the three laws were remarkably robust. When their parameters were influenced by spatial scale and environmental factors, the parameters could not be species‐specific indicators. We suggest biological mechanisms that may explain some of these findings.  相似文献   

18.
Spawning habitats of anchovy Engraulis encrasicolus and sardinella Sardinella aurita were investigated in the Gulf of Gabès by means of two surveys carried out during the summer of 2005 and 2009. The spatial patterns of early developmental stages were analyzed through Lloyd’s patchiness index, single quotient analyses, and principal component analyses. The results showed that Gulf of Gabès is an important area for anchovy and sardinella spawning. Within this area, anchovy and sardinella showed preference for the warmest waters to spawn. The main spawning areas for anchovy were located in the inner parts of the Gulf, and a secondary spawning area was observed offshore. Contrastingly, the main spawning ground of sardinella was found in the center of the Gulf. In both years, early larvae of anchovy showed a greater degree of aggregation than that of sardinella. The developmental stages of both species showed low spatial overlap, indicating that the spawning habitats of these species are spatially differentiated in the Gulf of Gabès.  相似文献   

19.
Although oogonial proliferation continues in mature females in most teleosts, its dynamics and the transformation of oogonia to early meiotic oocytes during the reproductive cycle have received little attention. In the present study, early oogenesis was examined throughout the reproductive cycle in two Clupeiform fishes, the Mediterranean sardine, Sardina pilchardus, and the European anchovy, Engraulis encrasicolus. Observations using confocal laser scanning microscopy (CLSM) provided extensive information on markers of oogonial proliferation (mitotic divisions, oogonia nests) and meiotic prophase I divisions of oocyte nests (leptotene, zygotene, pachytene, diplotene) in ovaries of different reproductive phases. In sardine, oogonial proliferation persisted throughout the entire reproductive cycle, whereas in anchovy, it was more pronounced prior to (developing ovaries) and after (resting ovaries) the spawning period. Anchovy exhibited a higher rate of meiotic activity in developing ovaries, whereas sardine exhibited a higher rate in resting ovaries. The observed differences between the two species can potentially be attributed to different seasonal patterns of energy allocation to reproduction and the synchronization between feeding and the spawning season.  相似文献   

20.
Theoretical analyses of single‐species models have revealed that the degree of synchrony in fluctuations of geographically separated populations increases with increasing spatial covariation in environmental fluctuations and increased interchange of individuals, but decreases with local strength of density dependence. Here we extend these results to include interspecific competition between two species as well as harvesting. We show that the effects of interspecific competition on the geographical scale of population synchrony are dependent on the pattern of spatial covariation of environmental variables. If the environmental noise is uncorrelated between the competing species, competition generally increases the spatial scale of population synchrony of both species. Otherwise, if the environmental noises are strongly correlated between species, competition generally increases the spatial scale of population synchrony of at least one, but also often of both species. The magnitude of these spatial scaling effects is, however, strongly influenced by the dispersal capacity of the two competing species. If the species are subject to proportional harvesting, this may synchronise population dynamics over large geographical areas, affecting the vulnerability of harvested species to environmental changes. However, the strength of interspecific competition may strongly modify this effect of harvesting on the spatial scale of population synchrony. For example, harvesting of one species may affect the spatial distribution of competing species that are not subject to harvesting. These analytical results provide an important illustration of the importance of applying an ecosystem rather than a single‐species perspective when developing harvest strategies for a sustainable management of exploited species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号