首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMPylation of mammalian small GTPases by bacterial virulence factors can be a key step in bacterial infection of host cells, and constitutes a potential drug target. This posttranslational modification also exists in eukaryotes, and AMP transferase activity was recently assigned to HYPE Filamentation induced by cyclic AMP domain containing protein (FICD) protein, which is conserved from Caenorhabditis elegans to humans. In contrast to bacterial AMP transferases, only a small number of HYPE substrates have been identified by immunoprecipitation and mass spectrometry approaches, and the full range of targets is yet to be determined in mammalian cells. We describe here the first example of global chemoproteomic screening and substrate validation for HYPE-mediated AMPylation in mammalian cell lysate. Through quantitative mass-spectrometry-based proteomics coupled with novel chemoproteomic tools providing MS/MS evidence of AMP modification, we identified a total of 25 AMPylated proteins, including the previously validated substrate endoplasmic reticulum (ER) chaperone BiP (HSPA5), and also novel substrates involved in pathways of gene expression, ATP biosynthesis, and maintenance of the cytoskeleton. This dataset represents the largest library of AMPylated human proteins reported to date and a foundation for substrate-specific investigations that can ultimately decipher the complex biological networks involved in eukaryotic AMPylation.Covalent posttranslational modification (PTM) of hydroxyl-containing amino acids in proteins by adenosine monophosphate (AMP), called AMPylation or adenylylation, was first discovered almost a half century ago as a mechanism controlling the activity of bacterial glutamine synthetase (1). This unusual PTM was unknown in eukaryotes until it was identified in 2009 in the context of bacterial infection, when Yarbrough et al. reported AMPylation of host small GTPases by bacterial virulence factor Vibrio outer protein S (VopS) from Vibrio parahemeolyticus. In this context, AMPylation precludes interactions with downstream binding partners and causes actin cytoskeleton collapse leading to cell death (2). Since then, the field of AMPylation has grown substantially, with reports describing AMPylation activity of other bacterial effectors, like Immunoglobulin binding protein A (IbpA) in Histophilus somni (3) and Defects in Rab1 recruitment protein A (DrrA) in Legionella pneumophila (4). These new bacterial AMPylators share a common substrate class (small GTPases); however, they differed in the identity of their catalytic residues and architecture of their active sites. Accordingly, bacterial AMP transferases have been classified as either filamentation induced by cyclic AMP (FIC) or adenylyl transferase (AT)1 domain containing enzymes, with catalytic His or Asp residues, respectively.Although adenylylation has been most extensively described in the context of bacterial infection, there is a growing interest in elucidating the scope of this PTM in a native eukaryotic context. Among the ca. 3000 FIC proteins identified so far by sequence alignment, only a single enzyme has been identified in eukaryotes: Huntingtin-associated protein E (HYPE), also known as FICD. HYPE is conserved from C. elegans to humans, and mRNA expression data suggest that it is present at low levels in all human tissues (3). Apart from the catalytic FIC domain, the protein consists of one transmembrane helix and two tetratricopeptide repeat motifs that point to localization at a membrane and amenability toward protein–protein interactions, respectively. We recently added to this picture by solving the first crystal structure of Homo sapiens HYPE (5), illustrating that the only human FIC is substantially different from its bacterial cousins (6, 7). HYPE was shown to form stable asymmetric dimers supported by the extended network of contacts exclusive to the FIC domains, while the tetratricopeptide repeat motifs have a more flexible arrangement and appear to be exposed for protein–protein interactions in the vicinity of the membrane. In addition, we confirmed the similarity of the active site architecture to other FIC proteins for which a crystal structure is available, with the catalytic loop comprising the invariant catalytic His363 (8), and further substantiated the role of a critical residue Glu234 in an inhibitory helix (9) that may be responsible for regulating HYPE enzymatic activity.Various catalytic activities have been demonstrated for FIC proteins, including nucleotide (AMP, GMP, and UMP) transfer as well as phosphorylation and phosphocholination (1013). We and others (3, 5, 14, 15) have demonstrated that HYPE can function in protein AMPylation, although the activity of the wild-type (WT) enzyme is very weak, consistent with active site obstruction by Glu234. It is hypothesized that this intramolecular inhibition can be relieved by specific but as yet unknown protein–protein interactions or by the removal of the conserved Glu. Indeed, the E234G mutation substantially boosts HYPE''s activity as demonstrated by the elevated auto-AMPylation of HYPE itself (5, 9) and a few of its recently reported substrates, including the ER chaperone BiP in vivo (14, 15) and several histone proteins in vitro (16, 17). HYPE activity was initially implicated in visual neurotransmission in flies (18) and later in regulation of the unfolded protein response (UPR) in transfected cells, although there is limited consensus over the mechanism (14, 15). Most recently, it has been proposed that HYPE activity might have a role in regulation of gene expression; however, the mechanistic details remain to be elucidated (17).AMPylation profiling is not a trivial task (19), and several strategies have emerged over the past few years ranging from labeling with radioactive ATP (2, 3) and immunoprecipitation with AMPylation-specific antibodies (20, 21) to mass spectrometry (MS) approaches focused on AMP fragmentation (22, 23). Although these methods contributed significantly to developments in the field, they also suffer from certain drawbacks, including low sensitivity, high background, limited quantitative power, and limited amenability to high-throughput (HT) substrate identification. In contrast, chemoproteomic strategies involving application of substrate analogues (substrate probes) equipped with small and inert chemical handles in combination with sensitive detection by MS can facilitate rapid visualization and/or robust enrichment of modified proteins and can provide superior performance in HT profiling of numerous challenging PTMs (24). AMPylation-specific substrate probes have been developed, and their robust performance was evaluated in vitro, albeit to date only in the context of bacterial effector-mediated AMPylation (2527). We previously showed that a bioorthogonal substrate probe (26) is well tolerated in the active site of human HYPE and, moreover, that it has potential for chemoproteomic profiling of HYPE substrates in vitro when combined with ligation through copper-catalyzed azide alkyne cycloaddition (CuAAC) to a dedicated capture reagent decorated with a biotin affinity handle and carboxytetramethylrhodamine (TAMRA) fluorophore (5).Herein, we present the first global AMPylation profile in a native eukaryotic context utilizing a bioorthogonal ATP analogue and chemoproteomic methodology. We first demonstrate efficient enrichment and fast visualization of potential HYPE substrates in cell lysates by in-gel fluorescence, followed by robust identification via shotgun proteomics on a QExactive mass spectrometer. Furthermore, we extensively validate candidate substrates via HYPE titration and ATP competition experiments with a quantitative MS-based readout, as well as Western blotting and direct MS/MS evidence for AMP modification. Finally, we analyze HYPE interaction partners in vivo, providing a link between our discoveries in lysates and a physiologically relevant context, delivering the first experimentally validated library of HYPE substrate proteins.  相似文献   

2.
3.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

4.
5.
Degradation of the M phase cyclins triggers the exit from M phase. Cdc14 is the major phosphatase required for the exit from the M phase. One of the functions of Cdc14 is to dephosphorylate and activate the Cdh1/APC/C complex, resulting in the degradation of the M phase cyclins. However, other crucial targets of Cdc14 for mitosis and cytokinesis remain to be elucidated. Here we systematically analyzed the positions of dephosphorylation sites for Cdc14 in the budding yeast Saccharomyces cerevisiae. Quantitative mass spectrometry identified a total of 835 dephosphorylation sites on 455 potential Cdc14 substrates in vivo. We validated two events, and through functional studies we discovered that Cdc14-mediated dephosphorylation of Smc4 and Bud3 is essential for proper mitosis and cytokinesis, respectively. These results provide insight into the Cdc14-mediated pathways for exiting the M phase.All cells proliferate following a fixed, highly coordinated cycle. Mitosis especially requires elaborate coordination for proper chromosome segregation, mitotic spindle disassembly, and cytokinesis. Much of this activity is facilitated by numerous, diverse phosphorylation and dephosphorylation signals that orchestrate the precise progression of M phase.Prior to mitosis, sister chromatids resulting from DNA replication during S phase are held together by the cohesion complex. Then, during prophase, chromosomes are condensed by the condensin (Smc2/4) complex (1) and microtubules are remodeled to form the mitotic spindle (2). Subsequently, in metaphase, the microtubules of the spindle apparatus attach to the chromosome kinetochores (3) and dissolution of the sister chromatids is triggered by the separase-mediated cleavage of cohesin (4, 5). Finally, Cdc14, Cdh1, and APC/C work together in telophase to degrade the M phase cyclins (6), promote decondensation of chromosomes (7), and finish cytokinesis (8, 9).Cdc14, a dual-specificity phosphatase that removes the phosphate group on both phosphotyrosine and phosphoserine/threonine residues (10), is required for mitosis (11, 12). Specifically, Cdc14 function is essential in late M phase: cells carrying a defective mutation arrest in telophase (13), whereas overexpression of Cdc14 results in G1 arrest (12). Cdc14 triggers mitotic cyclin-dependent kinase (CDK)1 inactivation, enabling cells to exit mitosis through dephosphorylation and activation of the inhibitors of CDKs. At interphase, Cdc14 is a subunit of the mitotic exit network (1417), which usually localizes to the nucleolus. However, the Cdc14 early anaphase release network initiates the release of Cdc14 from its inhibitor, Net1/Cfi1 (18), and the mitotic exit network promotes further release of Cdc14 from its inhibitor, allowing it to spread into the nucleus and cytoplasm, where it dephosphorylates its major targets (8, 9), leading to exit from mitosis. In addition to this essential role in late M phrase, Cdc14 substrates have also been identified in other stages of the cell cycle (19).Cdc14 putatively regulates 27 proteins (1922). Some studies have documented the substrates of Cdc14 via in vitro phosphatase assay, whereas others have provided in vivo evidence. However, dephosphorylation sites have been identified for only five of the target proteins (17, 2225), suggesting that spurious relationships cannot be ruled out. Also, experiments have not been carried out to demonstrate whether these modifications entail direct or indirect regulation. Therefore, our understanding of Cdc14 function and regulation during mitosis in metazoans is incomplete. Conceivably, Cdc14 may regulate many more substrates involved in aspects of chromosome condensation and cytokinesis. To examine this possibility we performed a systematic phosphoproteomic screen to identify new in vivo pathways regulated by Cdc14. Using this approach, we identified both known and potentially novel substrates of Cdc14, as well as their dephosphorylation sites. Many potentially novel substrates are physically associated with Cdc14 in public databases. We also provide biochemical evidence for direct dephosphorylation of the substrates, characterize the specificity of dephosphorylation in two substrates, Smc4 and Bud3, and further study their regulation and critical role in mitosis and cytokinesis.  相似文献   

6.
7.
8.
9.
10.
Kinase mediated phosphorylation signaling is extensively involved in cellular functions and human diseases, and unraveling phosphorylation networks requires the identification of substrates targeted by kinases, which has remained challenging. We report here a novel proteomic strategy to identify the specificity and direct substrates of kinases by coupling phosphoproteomics with a sensitive stable isotope labeled kinase reaction. A whole cell extract was moderately dephosphorylated and subjected to in vitro kinase reaction under the condition in which 18O-ATP is the phosphate donor. The phosphorylated proteins are then isolated and identified by mass spectrometry, in which the heavy phosphate (+85.979 Da) labeled phosphopeptides reveal the kinase specificity. The in vitro phosphorylated proteins with heavy phosphates are further overlapped with in vivo kinase-dependent phosphoproteins for the identification of direct substrates with high confidence. The strategy allowed us to identify 46 phosphorylation sites on 38 direct substrates of extracellular signal-regulated kinase 1, including multiple known substrates and novel substrates, highlighting the ability of this high throughput method for direct kinase substrate screening.Protein phosphorylation regulates almost all aspects of cell life, such as cell cycle, migration, and apoptosis (1), and deregulation of protein phosphorylation is one of the most frequent causes or consequences of human diseases including cancers, diabetes, and immune disorders (2). Up till now, however, known substrates are far from saturation for the majority of protein kinases (3); thus, mapping comprehensive kinase-substrate relationships is essential to understanding biological mechanisms and uncovering new drug targets (4).Accompanied with advances of high-speed and high-resolution mass spectrometry, the technique of kinase substrate screening using proteomic strategy is quickly evolving (57). Mass spectrometry has been extensively used for kinase-substrate interaction mapping (8) and global phosphorylation profiling (9). Although thousands of phosphorylation sites have been detected, complex phosphorylation cascade and crosstalk between pathways make it difficult for large-scale phosphoproteomics to reveal direct relationships between protein kinases and their substrates (10, 11). Extensive statistics, bioinformatics, and downstream biochemical assays are mandatory for the substrate verification (12, 13). Another strategy uses purified, active kinases to phosphorylate cell extracts in vitro, followed by mass spectrometric analysis to identify phosphoproteins. This approach inevitably faces the major challenge of separating real sites phosphorylated by target kinase and the phosphorylation triggered by endogenous kinases from cell lysates (14). Analog-sensitive kinase allele (15) overcomes the issue by utilizing the engineered kinase that can exclusively take a bulky-ATP analog under the reaction condition. Analog-sensitive kinase allele has been coupled with γ-thiophosphate analog ATP to facilitate the mass spectrometric analysis (1618).We have introduced kinase assay-linked phosphoproteomics (KALIP)1 to link the in vitro substrate identification and physiological phosphorylation events together in a high throughput manner (19, 20). The strategy, however, has only been applied to identify direct substrates of tyrosine kinases. In this study, we expanded the application of KALIP to serine/threonine kinases by introducing a quantitative strategy termed Stable Isotope Labeled Kinase Assay-Linked Phosphoproteomics (siKALIP). The method was applied to identify direct substrates of extracellular signal-regulated kinase 1 (ERK1), a serine/threonine kinase acting as an essential component of the Mitogen-activated protein kinase (MAPK) signal transduction pathway (21). A defect in the MAP/ERK pathway causes uncontrolled growth, which likely leads to cancer (22) and other diseases (2325). ERK1 can be activated by growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and nerve growth factor (NGF) (26). Upon stimulation, ERK1 phosphorylates hundreds of substrates in various cellular compartments including cytoplasm, nucleus, and membrane (27). Among 38 ERK1 direct substrates identified by siKALIP, more than one third are previously discovered by classical molecular biology approaches, highlighting high specificity and sensitivity of the strategy. The results also support the hypothesis that ERK1 plays complex roles in multiple pathways that are essential for the cell growth regulation.  相似文献   

11.
12.
Encapsulated Klebsiella pneumoniae is the predominant causative agent of pyogenic liver abscess, an emerging infectious disease that often complicates metastatic meningitis or endophthalmitis. The capsular polysaccharide on K. pneumoniae surface was determined as the key to virulence. Although the regulation of capsular polysaccharide biosynthesis is largely unclear, it was found that protein-tyrosine kinases and phosphatases are involved. Therefore, the identification and characterization of such kinases, phosphatases, and their substrates would advance our knowledge of the underlying mechanism in capsule formation and could contribute to the development of new therapeutic strategies. Here, we analyzed the phosphoproteome of K. pneumoniae NTUH-K2044 with a shotgun approach and identified 117 unique phosphopeptides along with 93 in vivo phosphorylated sites corresponding to 81 proteins. Interestingly, three of the identified tyrosine phosphorylated proteins, namely protein-tyrosine kinase (Wzc), phosphomannomutase (ManB), and undecaprenyl-phosphate glycosyltransferase (WcaJ), were found to be distributed in the cps locus and thus were speculated to be involved in the converging signal transduction of capsule biosynthesis. Consequently, we decided to focus on the lesser studied ManB and WcaJ for mutation analysis. The capsular polysaccharides of WcaJ mutant (WcaJY5F) were dramatically reduced quantitatively, and the LD50 increased by 200-fold in a mouse peritonitis model compared with the wild-type strain. However, the capsular polysaccharides of ManB mutant (ManBY26F) showed no difference in quantity, and the LD50 increased by merely 6-fold in mice test. Our study provided a clear trend that WcaJ tyrosine phosphorylation can regulate the biosynthesis of capsular polysaccharides and result in the pathogenicity of K. pneumoniae NTUH-K2044.Protein phosphorylation is one of the most biologically relevant and ubiquitous post-translational modifications in both eukaryotic and prokaryotic organisms. It is best known that protein phosphorylation is a reversible enzyme-catalyzed process that is controlled by various kinases and phosphatases. The aberrant functions often result in irregular protein phosphorylation and ultimately lead to serious disease states such as malignant transformation, immune disorders, and pathogenic infections in mammals (1, 2). Recently, accumulating evidences suggest that Ser/Thr/Tyr phosphorylations also contribute to regulate a diverse range of cellular responses and physiological processes in prokaryotes (1). Among them, tyrosine phosphorylation in encapsulated bacteria has been discovered to play key roles in capsular polysaccharide (CPS1; K antigen) biosynthesis, which leads to virulence (3, 4). This thick layer of exopolysaccharide on many pathogenic bacteria can act as a physical boundary to evade phagocytosis and complement-mediated killing and further inhibit complement activation of the host (1, 5, 6).In 1996, Acinetobacter johnsonii protein-tyrosine kinase (Ptk) was first discovered and categorized under the bacterial protein-tyrosine kinase (BY-kinase) family (1, 7, 8). Shortly after, its function in bacterial exopolysaccharide production and transport was characterized (1, 7, 8). From then on, many more bacterial tyrosine kinases such as Wzc of Escherichia coli (1, 9) and EpsB of Pseudomonas solanacearum (10, 11) were found to possess this conserved property; deletion of such tyrosine kinases will result in the loss of exopolysaccharide production (12). Therefore, several experiments were conducted to investigate the role of the downstream substrates of the tyrosine kinases in different strains of bacteria, and some targeted proteins were found to participate in the exopolysaccharide anabolism (13, 14). These findings demonstrated a direct relationship between bacterial tyrosine phosphorylation and exopolysaccharide biosynthesis that was directly reflected in the strain virulence.In the past, the functional roles of the critical components involved in protein phosphorylation were defined by basic biochemical and genetic approaches (1). However, there exists a salient gap between the growing number of identified protein-tyrosine kinases/phosphatases and the relative paucity of protein substrates characterized to date. Genomic sequence analyses and advanced high resolution/high accuracy MS systems with vastly improved phosphopeptide enrichment strategies are among the two key enabling technologies that allow a high efficiency identification of the scarcely detectable site-specific phosphorylations in bacterial systems (15). Mann et al. (16) were the first to initiate a systematic study of the phosphoproteome of B. subtilis in 2007 followed by similar site-specific phosphoproteomics analyses of E. coli (17), Lactococcus lactis (18), and Halobacterium salinarum (19). These pioneering works have since set the foundation in bacterial phosphoproteomics but have not been specifically carried out to address a particular biological issue of causal relevance to virulence or pathogenesis.Klebsiella pneumoniae is a Gram-negative, non-motile, facultative anaerobic, and rod-shaped bacterium. It is commonly found in water and soil (20) as well as on plants (21) and mucosal surfaces of mammals, such as human, horse, and swine (22, 23). It was demonstrated that CPS on the surface of K. pneumoniae is the prime factor of virulence and toxicity in causing pyogenic liver abscess (PLA), a common intra-abdominal infection with a high 10–30% mortality rate worldwide (2429). There are also variations in virulence in regard to different capsular serotypes; K1 and K2 were found to be especially pathogenic in causing PLA in a mouse model (30) compared with other serotypes, which show little or no effect (3134). The K. pneumoniae NTUH-K2044 (K2044) strain, encapsulated with K1 antigen (35), was isolated from clinical K. pneumoniae liver abscess patients. It has become an important emerging pathogen (36) because it usually complicates metastatic septic endophthalmitis and irreversible central nervous system infections independent of host underlying diseases (30, 34). The transmission rate is high (37), and it often rapidly leads to outbreaks of community-acquired infections, such as bacteremia, nosocomial pneumonia, and sepsis, common in immunocompromised individuals (38).In this study, we wanted to prove that the biosynthesis of CPS is mediated through tyrosine phosphorylation of a subset of proteins. An MS-based systematic phosphoproteomics analysis was conducted on K2044 to identify tyrosine phosphorylated proteins that are also associated with CPS biosynthesis. We further validated the relationship between tyrosine phosphorylation on those proteins and virulence of K2044 by site-directed mutagenesis, CPS quantification, serum killing, and mouse lethality assay.  相似文献   

13.
14.
15.
Mitotic division requires highly regulated morphological and biochemical changes to the cell. Upon commitment to exit mitosis, cells begin to remove mitotic regulators in a temporally and spatially controlled manner to bring about the changes that reestablish interphase. Ubiquitin-dependent pathways target these regulators to generate polyubiquitin-tagged substrates for degradation by the 26S proteasome. However, the lack of cell-based assays to investigate in vivo ubiquitination limits our knowledge of the identity of substrates of ubiquitin-mediated regulation in mitosis. Here we report an in vivo ubiquitin tagging system used in human cells that allows efficient purification of ubiquitin conjugates from synchronized cell populations. Coupling purification with mass spectrometry, we have identified a series of mitotic regulators targeted for polyubiquitination in mitotic exit. We show that some are new substrates of the anaphase-promoting complex/cyclosome and validate KIFC1 and RacGAP1/Cyk4 as two such targets involved respectively in timely mitotic spindle disassembly and cell spreading. We conclude that in vivo biotin tagging of ubiquitin can provide valuable information about the role of ubiquitin-mediated regulation in processes required for rebuilding interphase cells.Ubiquitination has emerged as a major post-translational modification determining the fate of cellular proteins. One of these fates is proteolysis, whereby the assembly of polyubiquitin chains creates signatures on target proteins that specify delivery to the 26S proteasome for proteolytic destruction. Targeted proteolysis is critical to the control of cell division. For example, the universally conserved mechanism of mitotic exit depends upon rapid proteolysis of mitotic cyclins and securins to drive the transition from mitosis to interphase. This transition is under surveillance by the spindle assembly checkpoint (SAC),1 which controls the activity of a multi-subunit ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) (1, 2).Much of the known specificity in the ubiquitin-proteasome system (UPS) is mediated at the level of substrate targeting by ubiquitin ligase (E3) enzymes, of which there are more than 600 in human cells. Given these facts, it is perhaps surprising that the APC/C is almost the only known engineer of the protein landscape after anaphase onset, targeting mitotic regulators for destruction with high temporal specificity (24). Some roles for nondegradative ubiquitination in regulating the localization of mitotic kinases Aurora B and Plk1 have been described (59), and a growing list of reported ubiquitin interactors can modulate ubiquitin-dependent events during mitosis (10). However, the majority of ubiquitination events that have so far been described as occurring at the transition from mitosis to interphase are APC/C-dependent.Two co-activator subunits, Cdc20 and Cdh1, play vital roles in APC/C-dependent substrate recognition (11) by recognizing two widely characterized degrons, the D-box and the KEN motif (12, 13). Computational approaches that have been used to calculate the total number of APC/C substrates from the prevalence of degrons in the human proteome estimate that there are between 100 and 200 substrates (14), and experiments using in vitro ubiquitination of protein arrays have given rise to estimates in the same range (15). Most of the mitotic regulators targeted by the APC/C during mitotic exit in human cells have been identified via in vitro degradation assays or ubiquitination assays on in vitro–expressed pools of substrates (1518). These approaches have identified several important substrates, but in the absence of in vivo parameters they may not identify substrates whose targeting depends on post-translational modifications or substrates that are only recognized in vivo as components of higher-order complexes. Not all substrates identified in this way have been validated as polyubiquitinated proteins in vivo. Multiple recent proteomic studies have identified large numbers of in vivo ubiquitin-modified sites from yeast (1921) and human cells (2229). None of these studies have used synchronized cell populations to provide information on the timing or regulation of substrate ubiquitination.We reasoned that a better view of ubiquitin-mediated processes that regulate mitotic exit would come from identifying proteins that are ubiquitinated in vivo during mitotic exit. With this goal in mind we adopted a system for in vivo tagging of ubiquitin chains with biotin, previously used to identify ubiquitin-conjugated proteins from the Drosophila neural system (30), and applied it to a human cell line (U2OS) that can be tightly synchronized at mitosis. In contrast to several recent studies that employed antibodies specific to the diGly-Lys remnant that marks ubiquitination sites following trypsin digestion (19, 25), an in vivo ubiquitin tagging strategy allows direct validation of candidate ubiquitinated proteins (whether mono- or polyubiquitinated) through immunoblotting of samples. Moreover, in contrast to other methods for affinity tagging of ubiquitin, or affinity purification via ubiquitin-binding domains, the use of the biotin tag enables purification under highly denaturing conditions for stringent isolation of ubiquitin-conjugated material from higher eukaryotes. His6-tagged ubiquitin is also available for use under denaturing conditions, but it is not generally useful in higher eukaryotic cells, where a high frequency of proteins containing multiple histidine residues confounds the specificity of nickel-affinity pulldowns (as discussed in detail in Ref. 30). Therefore, in this paper we describe the reproducible identification and validation of mitoticphase-specific polyubiquitinated proteins via the in vivo biotinylation of ubiquitin. A large number of polyubiquitinated proteins that we identified are specific to mitotic exit, when the APC/C is active, and we expect that many of them are substrates for the APC/C. We formally identified KIFC1/HSET and Cyk4/RACGAP1 as targets of APC/C-dependent ubiquitin-mediated proteolysis after anaphase onset and investigated the role of their ubiquitination in the regulation of mitotic exit. Cell cycle phase-specific information on protein ubiquitination and the generation of ubiquitinated protein networks provides a framework for further investigation of ubiquitin-controlled processes occurring during the rebuilding of interphase cells.  相似文献   

16.
17.
18.
19.
The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated with disease and environmental persistence of A. baumannii. Recently, it was shown that a single biosynthetic pathway was responsible for the generation of capsule polysaccharide and O-linked protein glycosylation. Because of the requirement of these carbohydrates for virulence and the non-template driven nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison of the 26 glycoproteins identified revealed that different A. baumannii strains target similar protein substrates, both in characteristics of the sites of O-glycosylation and protein identity. Surprisingly, glycan micro-heterogeneity was also observed within nearly all isolates examined demonstrating glycan heterogeneity is a widespread phenomena in Acinetobacter O-linked glycosylation. By comparing the 11 main glycoforms and over 20 alternative glycoforms characterized within the 15 strains, trends within the glycan utilized for O-linked glycosylation could be observed. These trends reveal Acinetobacter O-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans with similar characteristics across all A. baumannii.Acinetobacter baumannii is an emerging opportunistic pathogen of increasing significance to health care institutions worldwide (13). The growing number of identified multiple drug resistant (MDR)1 strains (24), the ability of isolates to rapidly acquire resistance (3, 4), and the propensity of this agent to survive harsh environmental conditions (5) account for the increasing number of outbreaks in intensive care, burn, or high dependence health care units since the 1970s (25). The burden on the global health care system of MDR A. baumannii is further exacerbated by standard infection control measures often being insufficient to quell the spread of A. baumannii to high risk individuals and generally failing to remove A. baumannii from health care institutions (5). Because of these concerns, there is an urgent need to identify strategies to control A. baumannii as well as understand the mechanisms that enable its persistence in health care environments.Surface glycans have been identified as key virulence factors related to persistence and virulence within the clinical setting (68). Acinetobacter surface carbohydrates were first identified and studied in A. venetianus strain RAG-1, leading to the identification of a gene locus required for synthesis and export of the surface carbohydrates (9, 10). These carbohydrate synthesis loci are variable yet ubiquitous in A. baumannii (11, 12). Comparison of 12 known capsule structures from A. baumannii with the sequences of their carbohydrate synthesis loci has provided strong evidence that these loci are responsible for capsule synthesis with as many as 77 distinct serotypes identified by molecular serotyping (11). Because of the non-template driven nature of glycan synthesis, the identification and characterization of the glycans themselves are required to confirm the true diversity. This diversity has widespread implications for Acinetobacter biology as the resulting carbohydrate structures are not solely used for capsule biosynthesis but can be incorporated and utilized by other ubiquitous systems, such as O-linked protein glycosylation (13, 14).Although originally thought to be restricted to species such as Campylobacter jejuni (15, 16) and Neisseria meningitidis (17), bacterial protein glycosylation is now recognized as a common phenomenon within numerous pathogens and commensal bacteria (18, 19). Unlike eukaryotic glycosylation where robust and high-throughput technologies now exist to enrich (2022) and characterize both the glycan and peptide component of glycopeptides (2325), the diversity (glycan composition and linkage) within bacterial glycosylation systems makes few technologies broadly applicable to all bacterial glycoproteins. Because of this challenge a deeper understanding of the glycan diversity and substrates of glycosylation has been largely unachievable for the majority of known bacterial glycosylation systems. The recent implementation of selective glycopeptide enrichment methods (26, 27) and the use of multiple fragmentation approaches (28, 29) has facilitated identification of an increasing number of glycosylation substrates independent of prior knowledge of the glycan structure (3033). These developments have facilitated the undertaking of comparative glycosylation studies, revealing glycosylation is widespread in diverse genera and far more diverse then initially thought. For example, Nothaft et al. were able to show N-linked glycosylation was widespread in the Campylobacter genus and that two broad groupings of the N-glycans existed (34).During the initial characterization of A. baumannii O-linked glycosylation the use of selective enrichment of glycopeptides followed by mass spectrometry analysis with multiple fragmentation technologies was found to be an effective means to identify multiple glycosylated substrates in the strain ATCC 17978 (14). Interestingly in this strain, the glycan utilized for protein modification was identical to a single subunit of the capsule (13) and the loss of either protein glycosylation or glycan synthesis lead to decreases in biofilm formation and virulence (13, 14). Because of the diversity in the capsule carbohydrate synthesis loci and the ubiquitous distribution of the PglL O-oligosaccharyltransferase required for protein glycosylation, we hypothesized that the glycan variability might be also extended to O-linked glycosylation. This diversity, although common in surface carbohydrates such as the lipopolysaccharide of numerous Gram-negative pathogens (35), has only recently been observed within bacterial proteins glycosylation system that are typically conserved within species (36) and loosely across genus (34, 37).In this study, we explored the diversity within the O-linked protein glycosylation systems of Acinetobacter species. Our analysis complements the recent in silico studies of A. baumannii showing extensive glycan diversity exists in the carbohydrate synthesis loci (11, 12). Employing global strategies for the analysis of glycosylation, we experimentally demonstrate that the variation in O-glycan structure extends beyond the genetic diversity predicted by the carbohydrate loci alone and targets proteins of similar properties and identity. Using this knowledge, we developed a targeted approach for the detection of protein glycosylation, enabling streamlined analysis of glycosylation within a range of genetic backgrounds. We determined that; O-linked glycosylation is widespread in clinically relevant Acinetobacter species; inter- and intra-strain heterogeneity exist within glycan structures; glycan diversity, although extensive results in the generation of glycans with similar properties and that the utilization of a single glycan for capsule and O-linked glycosylation is a general feature of A. baumannii but may not be a general characteristic of all Acinetobacter species such as A. baylyi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号