首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Random Forest has become a standard data analysis tool in computational biology. However, extensions to existing implementations are often necessary to handle the complexity of biological datasets and their associated research questions. The growing size of these datasets requires high performance implementations. We describe CloudForest, a Random Forest package written in Go, which is particularly well suited for large, heterogeneous, genetic and biomedical datasets. CloudForest includes several extensions, such as dealing with unbalanced classes and missing values. Its flexible design enables users to easily implement additional extensions. CloudForest achieves fast running times by effective use of the CPU cache, optimizing for different classes of features and efficiently multi-threading. https://github.com/ilyalab/CloudForest.  相似文献   

2.
Multiple sequence alignment tools struggle to keep pace with rapidly growing sequence data, as few methods can handle large datasets while maintaining alignment accuracy. We recently introduced MAGUS, a new state-of-the-art method for aligning large numbers of sequences. In this paper, we present a comprehensive set of enhancements that allow MAGUS to align vastly larger datasets with greater speed. We compare MAGUS to other leading alignment methods on datasets of up to one million sequences. Our results demonstrate the advantages of MAGUS over other alignment software in both accuracy and speed. MAGUS is freely available in open-source form at https://github.com/vlasmirnov/MAGUS.  相似文献   

3.
Modeling the impact of amino acid mutations on protein-protein interaction plays a crucial role in protein engineering and drug design. In this study, we develop GeoPPI, a novel structure-based deep-learning framework to predict the change of binding affinity upon mutations. Based on the three-dimensional structure of a protein, GeoPPI first learns a geometric representation that encodes topology features of the protein structure via a self-supervised learning scheme. These representations are then used as features for training gradient-boosting trees to predict the changes of protein-protein binding affinity upon mutations. We find that GeoPPI is able to learn meaningful features that characterize interactions between atoms in protein structures. In addition, through extensive experiments, we show that GeoPPI achieves new state-of-the-art performance in predicting the binding affinity changes upon both single- and multi-point mutations on six benchmark datasets. Moreover, we show that GeoPPI can accurately estimate the difference of binding affinities between a few recently identified SARS-CoV-2 antibodies and the receptor-binding domain (RBD) of the S protein. These results demonstrate the potential of GeoPPI as a powerful and useful computational tool in protein design and engineering. Our code and datasets are available at: https://github.com/Liuxg16/GeoPPI.  相似文献   

4.
Gene expression analysis is becoming increasingly utilized in neuro-immunology research, and there is a growing need for non-programming scientists to be able to analyze their own genomic data. MGEnrichment is a web application developed both to disseminate to the community our curated database of microglia-relevant gene lists, and to allow non-programming scientists to easily conduct statistical enrichment analysis on their gene expression data. Users can upload their own gene IDs to assess the relevance of their expression data against gene lists from other studies. We include example datasets of differentially expressed genes (DEGs) from human postmortem brain samples from Autism Spectrum Disorder (ASD) and matched controls. We demonstrate how MGEnrichment can be used to expand the interpretations of these DEG lists in terms of regulation of microglial gene expression and provide novel insights into how ASD DEGs may be implicated specifically in microglial development, microbiome responses and relationships to other neuropsychiatric disorders. This tool will be particularly useful for those working in microglia, autism spectrum disorders, and neuro-immune activation research. MGEnrichment is available at https://ciernialab.shinyapps.io/MGEnrichmentApp/ and further online documentation and datasets can be found at https://github.com/ciernialab/MGEnrichmentApp. The app is released under the GNU GPLv3 open source license.  相似文献   

5.
In the integrative analyses of omics data, it is often of interest to extract data representation from one data type that best reflect its relations with another data type. This task is traditionally fulfilled by linear methods such as canonical correlation analysis (CCA) and partial least squares (PLS). However, information contained in one data type pertaining to the other data type may be complex and in nonlinear form. Deep learning provides a convenient alternative to extract low-dimensional nonlinear data embedding. In addition, the deep learning setup can naturally incorporate the effects of clinical confounding factors into the integrative analysis. Here we report a deep learning setup, named Autoencoder-based Integrative Multi-omics data Embedding (AIME), to extract data representation for omics data integrative analysis. The method can adjust for confounder variables, achieve informative data embedding, rank features in terms of their contributions, and find pairs of features from the two data types that are related to each other through the data embedding. In simulation studies, the method was highly effective in the extraction of major contributing features between data types. Using two real microRNA-gene expression datasets, one with confounder variables and one without, we show that AIME excluded the influence of confounders, and extracted biologically plausible novel information. The R package based on Keras and the TensorFlow backend is available at https://github.com/tianwei-yu/AIME.  相似文献   

6.
Tuberculosis (TB) is a global public health problem exacerbated by the HIV epidemic. Here we evaluate a candidate TB vaccine, MVA85A, in a Phase I study in HIV-infected adults in Senegal. 24 patients were enrolled: Group 1∶12, antiretroviral therapy (ART) naïve, adults, with CD4 counts >300 and HIV RNA load <100 000 copies/ml. Group 2∶12 adults, stable on ART, with CD4 counts >300, and an undetectable HIV RNA load. Safety was evaluated by occurrence of local and systemic adverse events (AEs) and by monitoring of CD4 count, HIV RNA load, haematology and biochemistry. Immunogenicity was evaluated by ex-vivo interferon-gamma ELISpot assay. 87.7% of AEs were mild; 11.6% were moderate; and 0.7% were severe. 29.2% of AEs were systemic; 70.8% were expected local AEs. There were no vaccine-related Serious Adverse Events (SAEs) or clinically significant effects on HIV RNA load or CD4 count. In ART naive subjects, the first MVA85A immunisation induced a significant immune response at 1 and 4 weeks post-immunisation, which contracted to baseline by 12 weeks. Durability of immunogenicity in subjects on ART persisted out to 24 weeks post-vaccination. A second dose of MVA85A at 12 months enhanced immunogenicity in ART naïve subjects. Subjects on ART had higher responses after the first vaccination compared with ART naïve subjects; responses were comparable after 2 immunisations. In conclusion, MVA85A is well-tolerated and immunogenic in HIV-infected subjects in Senegal. A two dose regimen in ART naïve subjects is comparable in immunogenicity to a single dose in subjects on ART.Clinicaltrials.gov trial identifier NCT00731471.  相似文献   

7.
Existing methods for identifying structural variants (SVs) from short read datasets are inaccurate. This complicates disease-gene identification and efforts to understand the consequences of genetic variation. In response, we have created Wham (Whole-genome Alignment Metrics) to provide a single, integrated framework for both structural variant calling and association testing, thereby bypassing many of the difficulties that currently frustrate attempts to employ SVs in association testing. Here we describe Wham, benchmark it against three other widely used SV identification tools–Lumpy, Delly and SoftSearch–and demonstrate Wham’s ability to identify and associate SVs with phenotypes using data from humans, domestic pigeons, and vaccinia virus. Wham and all associated software are covered under the MIT License and can be freely downloaded from github (https://github.com/zeeev/wham), with documentation on a wiki (http://zeeev.github.io/wham/). For community support please post questions to https://www.biostars.org/.
This is PLOS Computational Biology software paper.
  相似文献   

8.
Gene Set Context Analysis (GSCA) is an open source software package to help researchers use massive amounts of publicly available gene expression data (PED) to make discoveries. Users can interactively visualize and explore gene and gene set activities in 25,000+ consistently normalized human and mouse gene expression samples representing diverse biological contexts (e.g. different cells, tissues and disease types, etc.). By providing one or multiple genes or gene sets as input and specifying a gene set activity pattern of interest, users can query the expression compendium to systematically identify biological contexts associated with the specified gene set activity pattern. In this way, researchers with new gene sets from their own experiments may discover previously unknown contexts of gene set functions and hence increase the value of their experiments. GSCA has a graphical user interface (GUI). The GUI makes the analysis convenient and customizable. Analysis results can be conveniently exported as publication quality figures and tables. GSCA is available at https://github.com/zji90/GSCA. This software significantly lowers the bar for biomedical investigators to use PED in their daily research for generating and screening hypotheses, which was previously difficult because of the complexity, heterogeneity and size of the data.  相似文献   

9.
Many biological questions, including the estimation of deep evolutionary histories and the detection of remote homology between protein sequences, rely upon multiple sequence alignments and phylogenetic trees of large datasets. However, accurate large-scale multiple sequence alignment is very difficult, especially when the dataset contains fragmentary sequences. We present UPP, a multiple sequence alignment method that uses a new machine learning technique, the ensemble of hidden Markov models, which we propose here. UPP produces highly accurate alignments for both nucleotide and amino acid sequences, even on ultra-large datasets or datasets containing fragmentary sequences. UPP is available at https://github.com/smirarab/sepp.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0688-z) contains supplementary material, which is available to authorized users.  相似文献   

10.
Despite the growing number of immune repertoire sequencing studies, the field still lacks software for analysis and comprehension of this high-dimensional data. Here we report VDJtools, a complementary software suite that solves a wide range of T cell receptor (TCR) repertoires post-analysis tasks, provides a detailed tabular output and publication-ready graphics, and is built on top of a flexible API. Using TCR datasets for a large cohort of unrelated healthy donors, twins, and multiple sclerosis patients we demonstrate that VDJtools greatly facilitates the analysis and leads to sound biological conclusions. VDJtools software and documentation are available at https://github.com/mikessh/vdjtools.  相似文献   

11.
Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library.  相似文献   

12.
ChIP-seq is a powerful method for obtaining genome-wide maps of protein-DNA interactions and epigenetic modifications. CHANCE (CHip-seq ANalytics and Confidence Estimation) is a standalone package for ChIP-seq quality control and protocol optimization. Our user-friendly graphical software quickly estimates the strength and quality of immunoprecipitations, identifies biases, compares the user''s data with ENCODE''s large collection of published datasets, performs multi-sample normalization, checks against quantitative PCR-validated control regions, and produces informative graphical reports. CHANCE is available at https://github.com/songlab/chance.  相似文献   

13.
We describe an open-source kPAL package that facilitates an alignment-free assessment of the quality and comparability of sequencing datasets by analyzing k-mer frequencies. We show that kPAL can detect technical artefacts such as high duplication rates, library chimeras, contamination and differences in library preparation protocols. kPAL also successfully captures the complexity and diversity of microbiomes and provides a powerful means to study changes in microbial communities. Together, these features make kPAL an attractive and broadly applicable tool to determine the quality and comparability of sequence libraries even in the absence of a reference sequence. kPAL is freely available at https://github.com/LUMC/kPAL.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0555-3) contains supplementary material, which is available to authorized users.  相似文献   

14.
Intrinsically disordered proteins or, regions perform important biological functions through their dynamic conformations during binding. Thus accurate identification of these disordered regions have significant implications in proper annotation of function, induced fold prediction and drug design to combat critical diseases. We introduce DisPredict, a disorder predictor that employs a single support vector machine with RBF kernel and novel features for reliable characterization of protein structure. DisPredict yields effective performance. In addition to 10-fold cross validation, training and testing of DisPredict was conducted with independent test datasets. The results were consistent with both the training and test error minimal. The use of multiple data sources, makes the predictor generic. The datasets used in developing the model include disordered regions of various length which are categorized as short and long having different compositions, different types of disorder, ranging from fully to partially disordered regions as well as completely ordered regions. Through comparison with other state of the art approaches and case studies, DisPredict is found to be a useful tool with competitive performance. DisPredict is available at https://github.com/tamjidul/DisPredict_v1.0.  相似文献   

15.
The disease burden attributable to opportunistic pathogens depends on their prevalence in asymptomatic colonisation and the rate at which they progress to cause symptomatic disease. Increases in infections caused by commensals can result from the emergence of “hyperinvasive” strains. Such pathogens can be identified through quantifying progression rates using matched samples of typed microbes from disease cases and healthy carriers. This study describes Bayesian models for analysing such datasets, implemented in an RStan package (https://github.com/nickjcroucher/progressionEstimation). The models converged on stable fits that accurately reproduced observations from meta-analyses of Streptococcus pneumoniae datasets. The estimates of invasiveness, the progression rate from carriage to invasive disease, in cases per carrier per year correlated strongly with the dimensionless values from meta-analysis of odds ratios when sample sizes were large. At smaller sample sizes, the Bayesian models produced more informative estimates. This identified historically rare but high-risk S. pneumoniae serotypes that could be problematic following vaccine-associated disruption of the bacterial population. The package allows for hypothesis testing through model comparisons with Bayes factors. Application to datasets in which strain and serotype information were available for S. pneumoniae found significant evidence for within-strain and within-serotype variation in invasiveness. The heterogeneous geographical distribution of these genotypes is therefore likely to contribute to differences in the impact of vaccination in between locations. Hence genomic surveillance of opportunistic pathogens is crucial for quantifying the effectiveness of public health interventions, and enabling ongoing meta-analyses that can identify new, highly invasive variants.  相似文献   

16.
There is increasing interest in employing shotgun sequencing, rather than amplicon sequencing, to analyze microbiome samples. Typical projects may involve hundreds of samples and billions of sequencing reads. The comparison of such samples against a protein reference database generates billions of alignments and the analysis of such data is computationally challenging. To address this, we have substantially rewritten and extended our widely-used microbiome analysis tool MEGAN so as to facilitate the interactive analysis of the taxonomic and functional content of very large microbiome datasets. Other new features include a functional classifier called InterPro2GO, gene-centric read assembly, principal coordinate analysis of taxonomy and function, and support for metadata. The new program is called MEGAN Community Edition (CE) and is open source. By integrating MEGAN CE with our high-throughput DNA-to-protein alignment tool DIAMOND and by providing a new program MeganServer that allows access to metagenome analysis files hosted on a server, we provide a straightforward, yet powerful and complete pipeline for the analysis of metagenome shotgun sequences. We illustrate how to perform a full-scale computational analysis of a metagenomic sequencing project, involving 12 samples and 800 million reads, in less than three days on a single server. All source code is available here: https://github.com/danielhuson/megan-ce  相似文献   

17.
For many RNA molecules, the secondary structure is essential for the correct function of the RNA. Predicting RNA secondary structure from nucleotide sequences is a long-standing problem in genomics, but the prediction performance has reached a plateau over time. Traditional RNA secondary structure prediction algorithms are primarily based on thermodynamic models through free energy minimization, which imposes strong prior assumptions and is slow to run. Here, we propose a deep learning-based method, called UFold, for RNA secondary structure prediction, trained directly on annotated data and base-pairing rules. UFold proposes a novel image-like representation of RNA sequences, which can be efficiently processed by Fully Convolutional Networks (FCNs). We benchmark the performance of UFold on both within- and cross-family RNA datasets. It significantly outperforms previous methods on within-family datasets, while achieving a similar performance as the traditional methods when trained and tested on distinct RNA families. UFold is also able to predict pseudoknots accurately. Its prediction is fast with an inference time of about 160 ms per sequence up to 1500 bp in length. An online web server running UFold is available at https://ufold.ics.uci.edu. Code is available at https://github.com/uci-cbcl/UFold.  相似文献   

18.
19.

Background

The isolation with migration (IM) model is important for studies in population genetics and phylogeography. IM program applies the IM model to genetic data drawn from a pair of closely related populations or species based on Markov chain Monte Carlo (MCMC) simulations of gene genealogies. But computational burden of IM program has placed limits on its application.

Methodology

With strong computational power, Graphics Processing Unit (GPU) has been widely used in many fields. In this article, we present an effective implementation of IM program on one GPU based on Compute Unified Device Architecture (CUDA), which we call gPGA.

Conclusions

Compared with IM program, gPGA can achieve up to 52.30X speedup on one GPU. The evaluation results demonstrate that it allows datasets to be analyzed effectively and rapidly for research on divergence population genetics. The software is freely available with source code at https://github.com/chunbaozhou/gPGA.  相似文献   

20.
Scaffolding, i.e. ordering and orienting contigs is an important step in genome assembly. We present a method for scaffolding using second generation sequencing reads based on likelihoods of genome assemblies. A generative model for sequencing is used to obtain maximum likelihood estimates of gaps between contigs and to estimate whether linking contigs into scaffolds would lead to an increase in the likelihood of the assembly. We then link contigs if they can be unambiguously joined or if the corresponding increase in likelihood is substantially greater than that of other possible joins of those contigs. The method is implemented in a tool called Swalo with approximations to make it efficient and applicable to large datasets. Analysis on real and simulated datasets reveals that it consistently makes more or similar number of correct joins as other scaffolders while linking very few contigs incorrectly, thus outperforming other scaffolders and demonstrating that substantial improvement in genome assembly may be achieved through the use of statistical models. Swalo is freely available for download at https://atifrahman.github.io/SWALO/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号