共查询到20条相似文献,搜索用时 15 毫秒
1.
Extended research has been carried out to clarify the ecological role of plant
secondary metabolites (SMs). Although their primary ecological function is
self-defense, bioactive compounds have long been used in alternative medicine or
in biological control of pests. Several members of the family Labiatae are known
to have strong antimicrobial capacity. For testing and quantifying antibacterial
activity, most often standard microbial protocols are used, assessing inhibitory
activity on a selected strain. In this study, the applicability of a microbial
ecotoxtest was evaluated to quantify the aggregate bactericide capacity of
Labiatae species, based on the bioluminescence inhibition of the bacterium
Vibrio fischeri. Striking differences were found amongst
herbs, reaching even 10-fold toxicity. Glechoma hederacea L.
proved to be the most toxic, with the EC50 of 0.4073 g dried plant/l.
LC50 values generated by the standard bioassay seem to be a good
indicator of the bactericide property of herbs. Traditional use of the selected
herbs shows a good correlation with bioactivity expressed as bioluminescence
inhibition, leading to the conclusion that the Vibrio fischeri
bioassay can be a good indicator of the overall antibacterial capacity of herbs,
at least on a screening level.Key words: Labiatae, antibacterial property, bioactivity, Vibrio fischeri 相似文献
2.
Novel methodology is presented for indexing the relative potential of hosts to function as resources. A Host Potential Index (HPI) was developed as a practical framework to express relative host potential based on combining results from one or more independent studies, such as those examining host selection, utilization, and physiological development of the organism resourcing the host. Several aspects of the HPI are addressed including: 1) model derivation; 2) influence of experimental design on establishing host rankings for a study type (no choice, two-choice, and multiple-choice); and, 3) variable selection and weighting associated with combining multiple studies. To demonstrate application of the HPI, results from the interactions of spotted wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), with seven “reported” hosts (blackberries, blueberries, sweet cherries, table grapes, peaches, raspberries, and strawberries) in a postharvest scenario were analyzed. Four aspects of SWD-host interaction were examined: attraction to host volatiles; population-level oviposition performance; individual-level oviposition performance; and key developmental factors. Application of HPI methodology indicated that raspberries (meanHPIvaried = 301.9±8.39; rank 1 of 7) have the greatest potential to serve as a postharvest host for SWD relative to the other fruit hosts, with grapes (meanHPIvaried = 232.4±3.21; rank 7 of 7) having the least potential. 相似文献
3.
Glyphosate-tolerant cotton cultivars were evaluated for tolerance to Belonolaimus longicaudatus in field experiments conducted from 2004 to 2005. Field trials were arranged in a split-plot design that included treatment with four levels of 1, 3-dichloropropene (0.0, 13.9, 27.8, and 41.7 1 a.i./ha) to establish a range of population densities of B. longicaudatus. Six cotton cultivars (early-to-mid maturity: DP444BG/RR SG501BR, ST5242BR; mid-to late maturity: DP451B/RR, ST5599BR, DP655BRR) were planted as whole plots. Fumigation was effective in suppressing B. longicaudatus population densities at mid-season, but not at cotton harvest, and increased cotton lint yield. The cultivar × fumigation interaction for cotton lint yield was not significant for the six cultivars evaluated, indicating that tolerance did not occur in this nematode-host combination. Early-to-mid maturity cultivars yielded significantly more than mid-to-late maturity cultivars in both years. Small but significant differences in nematode final population density were observed between cultivars that may be related to relative maturity. 相似文献
4.
While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58–118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations. 相似文献
5.
Joseph T. Snow Despo Polyviou Paul Skipp Nathan A. M. Chrismas Andrew Hitchcock Richard Geider C. Mark Moore Thomas S. Bibby 《PloS one》2015,10(11)
Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual ‘new’ nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron requirement due to the iron-binding proteins involved in these processes. Iron availability may therefore have a significant influence on the biogeography of Trichodesmium. Previous investigations of molecular responses to iron stress in this keystone marine microbe have largely been targeted. Here a holistic approach was taken using a label-free quantitative proteomics technique (MSE) to reveal a sophisticated multi-faceted proteomic response of Trichodesmium erythraeum IMS101 to iron stress. Increased abundances of proteins known to be involved in acclimation to iron stress and proteins known or predicted to be involved in iron uptake were observed, alongside decreases in the abundances of iron-binding proteins involved in photosynthesis and nitrogen fixation. Preferential loss of proteins with a high iron content contributed to overall reductions of 55–60% in estimated proteomic iron requirements. Changes in the abundances of iron-binding proteins also suggested the potential importance of alternate photosynthetic pathways as Trichodesmium reallocates the limiting resource under iron stress. Trichodesmium therefore displays a significant and integrated proteomic response to iron availability that likely contributes to the ecological success of this species in the ocean. 相似文献
6.
7.
Preuttiporn Supaphon Souwalak Phongpaichit Vatcharin Rukachaisirikul Jariya Sakayaroj 《PloS one》2013,8(8)
Endophytic fungi from three commonly found seagrasses in southern Thailand were explored for their ability to produce antimicrobial metabolites. One hundred and sixty endophytic fungi derived from
Cymodocea
serrulata
(Family Cymodoceaceae),
Halophila
ovalis
and
Thalassia
hemprichii
(Family Hydrocharitaceae) were screened for production of antimicrobial compounds by a colorimetric broth microdilution test against ten human pathogenic microorganisms including Staphylococcus aureus ATCC 25923, a clinical isolate of methicillin-resistant S. aureus, Escherichia coli ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 90028 and NCPF 3153, Cryptococcus neoformans ATCC 90112 and ATCC 90113 and clinical isolates of
Microsporum
gypseum
and
Penicillium
marneffei
. Sixty-nine percent of the isolates exhibited antimicrobial activity against at least one test strain. Antifungal activity was more pronounced than antibacterial activity. Among the active fungi, seven isolates including Hypocreales sp. PSU-ES26 from
C
. serrulata
,
Trichoderma
spp. PSU-ES8 and PSU-ES38 from
H
. ovalis
, and
Penicillium
sp. PSU-ES43,
Fusarium
sp. PSU-ES73,
Stephanonectria
sp. PSU-ES172 and an unidentified endophyte PSU-ES190 from
T
. hemprichii
exhibited strong antimicrobial activity against human pathogens with minimum inhibitory concentrations (MIC) of less than 10 µg/ml. The inhibitory extracts at concentrations of 4 times their MIC destroyed the targeted cells as observed by scanning electron microscopy. These results showed the antimicrobial potential of extracts from endophytic fungi from seagrasses. 相似文献
8.
9.
Herbicide Safener-Binding Protein of Maize
: Purification, Cloning, and Expression of an Encoding
cDNA 总被引:2,自引:0,他引:2
下载免费PDF全文

John S. Scott-Craig John E. Casida Lisa Poduje Jonathan D. Walton 《Plant physiology》1998,116(3):1083-1089
Dichloroacetamide safeners protect maize (Zea mays L.) against injury from chloroacetanilide and thiocarbamate herbicides. Etiolated maize seedlings have a high-affinity cytosolic-binding site for the safener [3H](R,S)-3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazol-idine ([3H]Saf), and this safener-binding activity (SafBA) is competitively inhibited by the herbicides. The safener-binding protein (SafBP), purified to homogeneity, has a relative molecular weight of 39,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an isoelectric point of 5.5. Antiserum raised against purified SafBP specifically recognizes a 39-kD protein in etiolated maize and sorghum (Sorghum bicolor L.), which have SafBA, but not in etiolated wheat (Triticum aestivum L.), oat (Avena sativa L.), barley (Hordeum vulgare L.), tobacco (Nicotiana tabacum L.), or Arabidopsis, which lack SafBA. SafBP is most abundant in the coleoptile and scarcest in the leaves, consistent with the distribution of SafBA. SBP1, a cDNA encoding SafBP, was cloned using polymerase chain reaction primers based on purified proteolytic peptides. Extracts of Escherichia coli cells expressing SBP1 have strong [3H]Saf binding, which, like binding to the native maize protein, is competitively inhibited by the safener dichlormid and the herbicides S-ethyl dipropylthiocarbamate, alachlor, and metolachlor. SBP1 is predicted to encode a phenolic O-methyltransferase, but SafBP does not O-methylate catechol or caffeic acid. The acquisition of its encoding gene opens experimental approaches for the evaluation of the role of SafBP in response to the relevant safeners and herbicides. 相似文献
10.
Second-stage larvae of Rhizonema sequoiae Cid del Prado Vera et al. developed into adult females in 6 months or adult males in 3 - 4 months on roots of Sequoia sempervirens maintained in a growth chamber at 16 C with a 12-hour light period. Under these conditions the second-stage larvae increased in diameter, the central cells of the genital primordium increased in size, and their nuclei enlarged. Mesenchymal cells accumulated in the esophageal and tail regions. Second-stage larvae become third-stage males or females 2 months after inoculation of redwood roots. Their sex could be distinguished by the ratio of length to width of the genital primordium, 3.4 for males and 1.6 for females. The stylet in both sexes became slender, the median bulb became robust and almost spherical, and rings of punctation on the cuticle were evident. Fourth-stage females developed in 3 months from the time of inoculation, and fourth-stage males in slightly less time. At this stage the females were more swollen than the males, the rectum was conspicuous, their reproductive system was in the process of elongation, and the annulation of the cuticle was more evident. The ratio of males to females was 2.3. Mature females were completely inside the roots and did not form cysts. The cuticle was entirely annulated, and the first eggs were detected inside the female 4 months after inoculation and started the production of abundant gelatin-like material. The new generation of second-stage larvae hatched inside the female 2 months after she matured, completing the life cycle in 8 months. The redwood nematode also completed its life cycle in 8 months under greenhouse conditions, but the ratio of males to females increased to 7.4. The entire nematode population died out at 25 C after 6 months. In a Marin County, California, forest, where this nematode occurs naturally, the temperature averaged only 9 C over the November to June period of this study, and the redwood nematode reached the fourth stage with a male-to-female ratio of 1.8. 相似文献
11.
12.
Erin L. Westman David J. McNally Armen Charchoglyan Dyanne Brewer Robert A. Field Joseph S. Lam 《The Journal of biological chemistry》2009,284(18):11854-11862
The lipopolysaccharide of Pseudomonas aeruginosa PAO1 contains an
unusual sugar, 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid
(d-ManNAc3NAcA). wbpB, wbpE, and wbpD
are thought to encode oxidase, transaminase, and N-acetyltransferase
enzymes. To characterize their functions, recombinant proteins were
overexpressed and purified from heterologous hosts. Activities of
His6-WbpB and His6-WbpE were detected only when both
proteins were combined in the same reaction. Using a direct MALDI-TOF mass
spectrometry approach, we identified ions that corresponded to the predicted
products of WbpB (UDP-3-keto-d-GlcNAcA) and WbpE
(UDP-d-GlcNAc3NA) in the coupled enzyme-substrate reaction.
Additionally, in reactions involving WbpB, WbpE, and WbpD, an ion consistent
with the expected product of WbpD (UDP-d-GlcNAc3NAcA) was
identified. Preparative quantities of UDP-d-GlcNAc3NA and
UDP-d-GlcNAc3NAcA were enzymatically synthesized. These compounds
were purified by high-performance liquid chromatography, and their structures
were elucidated by NMR spectroscopy. This is the first report of the
functional characterization of these proteins, and the enzymatic synthesis of
UDP-d-GlcNAc3NA and UDP-d-GlcNAc3NAcA.Gram-negative organisms such as Pseudomonas aeruginosa produce
lipopolysaccharide
(LPS)4 as an essential
component of the outer leaflet of the outer membrane. LPS can be conceptually
divided into three parts: lipid A, which anchors LPS into the membrane; core
oligosaccharide, which contributes to membrane stability; and the O-antigen,
which is a polysaccharide that extends away from the cell surface. In P.
aeruginosa, two types of O-antigen are observed: A-band O-antigen, which
is common to most strains, and B-band O-antigen, which is variable and
therefore used as the basis of the International Antigenic Typing Scheme
(1). P. aeruginosa
serotypes O2, O5, O16, O18, and O20 collectively belong to serogroup O2,
because they all share common backbone sugar structures in their O-antigen
repeat units consisting of two di-N-acetylated uronic acids and one
2-acetamido-2,6-dideoxy-d-galactose
(N-acetyl-d-fucosamine). The minor structural variations
in the O-antigen repeat units that differentiate this serogroup into five
serotypes are: the type of glycosidic linkage between O-units (alpha
versus beta) that is formed by the O-antigen polymerase (Wzy),
isomers present (d-mannuronic or l-guluronic acid), and
acetyl group substituents
(2–4).
The B-band O-antigen of P. aeruginosa PAO1 (serotype O5) contains a
repeating trisaccharide of
2-acetamido-3-acetamidino-2,3-dideoxy-d-mannuronic acid
(d-ManNAc3NAmA),
2,3-diacetamido-2,3-dideoxy-d-mannuronic acid
(d-ManNAc3NAcA), and 2-acetamido-2,6-dideoxy-d-galactose
(3).The biosynthesis of the two mannuronic acid derivatives has yet to be fully
understood and has been the subject of investigation by our group. To produce
UDP-d-ManNAc3NAcA, a five-step pathway has been proposed
(Fig. 1) that requires the
products of five genes localized to the B-band O-antigen biosynthesis cluster
(5). The O-antigen biosynthesis
cluster was shown to be identical for all serotypes within serogroup O2, which
further underscores the high similarity between these serotypes
(5). The five genes, including
wbpA, wbpB, wbpE, wbpD, and wbpI, have been shown to be
essential for B-band LPS biosynthesis, because knockout mutants of each of
these genes are deficient in B-band O-antigen
(6–8).
Homologs of all five of the proteins required for the
UDP-d-ManNAc3NAcA biosynthesis pathway are conserved in other
bacterial pathogens, including Bordetella pertussis, Bordetella
parapertussis, and Bordetella bronchiseptica.
Cross-complementation of P. aeruginosa knockout mutants lacking
wbpA, wbpB, wbpE, wbpD, or wbpI with the homologues from
B. pertussis could fully restore LPS production in the P.
aeruginosa LPS mutants, suggesting that the genes from B.
pertussis are functional homologs of the wbp genes
(7). Homologs of these genes
could be identified in diverse bacterial species, demonstrating the importance
of UDP-d-ManNAc3NAcA biosynthesis beyond its role in P.
aeruginosa (7).Open in a separate windowFIGURE 1.Proposed pathway for the biosynthesis of UDP-d-ManNAc3NAcA in
P. aeruginosa PAO1. The full names of the sugars are as follows:
GlcNAc, 2-acetamido-2-deoxy-d-glucose; GlcNAcA,
2-acetamido-2-deoxy-d-glucuronic acid; 3-keto-d-GlcNAcA,
2-acetamido-2-deoxy-d-ribo-hex-3-uluronic acid; GlcNAc3NA,
2-acetamido-3-amino-2,3-dideoxy-d-glucuronic acid; GlcNAc3NAcA,
2,3-diacetamido-2,3-dideoxy-d-glucuronic acid; ManNAc3NAcA,
2,3-diacetamido-2,3-dideoxy-d-mannuronic acid. Adapted from Ref.
8.The first enzyme of the UDP-d-ManNAc3NAcA biosynthesis pathway,
WbpA, is a 6-dehydrogenase that converts
UDP-2-acetamido-2-deoxy-d-glucose
(N-acetyl-d-glucosamine; UDP-d-GlcNAc) to
UDP-2-acetamido-2-deoxy-d-glucuronic acid
(N-acetyl-d-glucosaminuronic acid,
UDP-d-GlcNAcA) using NAD+ as a coenzyme
(9)
(Fig. 1). Following this, the
second step in UDP-d-ManNAc3NAcA biosynthesis is proposed to be an
oxidation reaction catalyzed by WbpB, forming
UDP-2-acetamido-2-deoxy-d-ribo-hex-3-uluronic acid
(3-keto-d-GlcNAcA), which in turn is used as the substrate for
transamination by WbpE, creating
UDP-2-acetamido-3-amino-2,3-dideoxy-d-glucuronic acid
(d-GlcNAc3NA).This residue is thought to be the substrate for WbpD, a putative
N-acetyltransferase of the hexapeptide acyltransferase superfamily
(10) that requires acetyl-CoA
as a co-substrate (8). WbpD has
been proposed to synthesize
UDP-2,3-diacetamido-2,3-dideoxy-d-glucuronic acid
(UDP-d-GlcNAc-3NAcA), which is utilized in the B-band O-antigen of
P. aeruginosa serotype O1. In P. aeruginosa serogroup O2,
the UDP-d-GlcNAc3NAcA is then epimerized by WbpI to create the
UDP-d-ManNAc3NAcA required for incorporation into B-band LPS
(11). A derivative of
UDP-d-ManNAc3NAcA is also used in the synthesis of B-band O-antigen
of P. aeruginosa serogroup O2. UDP-d-ManNAc3NAmA is
thought to be produced through additional modification of
UDP-d-ManNAc3NAcA via the action of WbpG, an amidotransferase,
which has also been demonstrated to be essential for the production of B-band
O-antigen (12,
13).In the current study, our aim was to define the function of WbpB, WbpE, and
WbpD, because only genetic evidence has previously been given for the
involvement of wbpB and wbpE
(7), and the reaction catalyzed
by WbpD could not be demonstrated due to the unavailability of its presumed
substrate, UDP-d-GlcNAc3NA
(8). The functional
characterization of these proteins is also important for understanding LPS
biosynthesis in B. pertussis, because the genes in the LPS locus of
this species, wlbA, wlbC, and wlbB, could cross-complement
knockouts of wbpB, wbpE, and wbpD, respectively, when
expressed in P. aeruginosa PAO1
(7). Furthermore, these three
proteins form a cassette for the generation of C-3 N-acetylated
hexoses and may be important for the biosynthesis of a variety of other
sugars. Capillary electrophoresis and MALDI-TOF mass spectrometry were used to
analyze reaction mixtures of WbpB and WbpE and showed that the expected
products were produced only when both enzymes were present together. Achieving
the enzymatic synthesis of the product of both enzymes, which was demonstrated
to be UDP-d-GlcNAc3NA by 1H NMR spectroscopy, was a key
breakthrough, because this rare sugar has never before been produced by any
means. UDP-d-GlcNAc3NA was also essential for use as the substrate
of WbpD, which not only allowed us to determine the enzymatic activity of this
protein but also allowed the enzymatic synthesis of
UDP-d-GlcNAc3NAcA to be achieved as well. Although this sugar had
previously been produced through a 17-step chemical synthesis
(11,
14), the 4-step concurrent
enzymatic reaction demonstrates the advantage of linking chemistry with
biology and represents a significant saving of both time and reagents as
compared with chemical synthesis. Finally, our data also showed the success in
reconstituting in vitro the 5-step pathway for the biosynthesis of
UDP-d-ManNAc3NAcA in P. aeruginosa. 相似文献
13.
14.
Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins 总被引:1,自引:0,他引:1
von Kobbe C Karmakar P Dawut L Opresko P Zeng X Brosh RM Hickson ID Bohr VA 《The Journal of biological chemistry》2002,277(24):22035-22044
The RecQ helicase family comprises a conserved group of proteins implicated in several aspects of DNA metabolism. Three of the family members are defective in heritable diseases characterized by abnormal growth, premature aging, and predisposition to malignancies. These include the WRN and BLM gene products that are defective in Werner and Bloom syndromes, disorders which share many phenotypic and cellular characteristics including spontaneous genomic instability. Here, we report a physical and functional interaction between BLM and WRN. These proteins were coimmunoprecipitated from a nuclear matrix-solubilized fraction, and the purified recombinant proteins were shown to interact directly. Moreover, BLM and WRN colocalized to nuclear foci in three human cell lines. Two regions of WRN that mediate interaction with BLM were identified, and one of these was localized to the exonuclease domain of WRN. Functionally, BLM inhibited the exonuclease activity of WRN. This is the first demonstration of a physical and functional interaction between RecQ helicases. Our observation that RecQ family members interact provides new insights into the complex phenotypic manifestations resulting from the loss of these proteins. 相似文献
15.
Estimation of the power spectrum is a common method for identifying oscillatory changes in neuronal activity. However, the stochastic nature of neuronal activity leads to severe biases in the estimation of these oscillations in single unit spike trains. Different biological and experimental factors cause the spike train to differentially reflect its underlying oscillatory rate function. We analyzed the effect of factors, such as the mean firing rate and the recording duration, on the detectability of oscillations and their significance, and tested these theoretical results on experimental data recorded in Parkinsonian non-human primates. The effect of these factors is dramatic, such that in some conditions, the detection of existing oscillations is impossible. Moreover, these biases impede the comparison of oscillations across brain regions, neuronal types, behavioral states and separate recordings with different underlying parameters, and lead inevitably to a gross misinterpretation of experimental results. We introduce a novel objective measure, the "modulation index", which overcomes these biases, and enables reliable detection of oscillations from spike trains and a direct estimation of the oscillation magnitude. The modulation index detects a high percentage of oscillations over a wide range of parameters, compared to classical spectral analysis methods, and enables an unbiased comparison between spike trains recorded from different neurons and using different experimental protocols. 相似文献
16.
Interaction of Cryptochrome 1, Phytochrome, and Ion Fluxes in
Blue-Light-Induced Shrinking of Arabidopsis
Hypocotyl
Protoplasts 总被引:5,自引:1,他引:5
下载免费PDF全文

Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl− and K+. The postshrinking volume recovery is achieved by K+ and Cl− influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B. 相似文献
17.
Dim-Red-Light-Induced Increase in Polar Auxin Transport in
Cucumber Seedlings
: I. Development of Altered Capacity, Velocity, and Response to
Inhibitors 总被引:3,自引:0,他引:3
下载免费PDF全文

We have developed and characterized a system to analyze light effects on auxin transport independent of photosynthetic effects. Polar transport of [3H]indole-3-acetic acid through hypocotyl segments from etiolated cucumber (Cucumis sativus L.) seedlings was increased in seedlings grown in dim-red light (DRL) (0.5 μmol m−2 s−1) relative to seedlings grown in darkness. Both transport velocity and transport intensity (export rate) were increased by at least a factor of 2. Tissue formed in DRL completely acquired the higher transport capacity within 50 h, but tissue already differentiated in darkness acquired only a partial increase in transport capacity within 50 h of DRL, indicating a developmental window for light induction of commitment to changes in auxin transport. This light-induced change probably manifests itself by alteration of function of the auxin efflux carrier, as revealed using specific transport inhibitors. Relative to dark controls, DRL-grown seedlings were differentially less sensitive to two inhibitors of polar auxin transport, N-(naphth-1-yl) phthalamic acid and 2,3,5-triiodobenzoic acid. On the basis of these data, we propose that the auxin efflux carrier is a key target of light regulation during photomorphogenesis. 相似文献
18.
Two-dimensional polyacrylamide gel electrophoretic patterns of proteins for two isolates of Labronema from Indiana were nearly identical to the pattern for L. vulvapapillatum from Europe. The pattern for a nominal isolate of L. pacificum from Florida was very different from the patterns of nominal L. pacificum isolates from Hawaii and Fiji (which had patterns very similar to each other). Patterns for four other isolates (in Eudorylaimus and Aporcelaimellus) were different from the Labronema patterns and from each other, although some constellations of protein spots were shared among all the isolates. The study demonstrates the utility of 2-D PAGE for clarifying taxonomic problems that cannot be resolved using classical morphological data alone. 相似文献
19.
Heterodera zeae, the corn cyst nematode, is redescribed and illustrated with comparative details and measurements of females, cysts, and larvae from Maryland, USA; and India. Scanning electron micrographs o f specimens from the United States are also presented. Revised measurements for the larval stylet and new diadnostic characters, especially in the cyst cone, for H. zeae are given. The relationship of H. zeae to close species is discussed. 相似文献
20.
Alok De Archana De Chris Papasian Shane Hentges Snigdha Banerjee Inamul Haque Sushanta K. Banerjee 《PloS one》2013,8(8)
Patients with ovarian cancer (OC) may be treated with surgery, chemotherapyand/or radiation therapy, although none of these strategies are very effective.Several plant-based natural products/dietary supplements, including extractsfrom Emblicaofficinalis (Amla), havedemonstrated potent anti-neoplastic properties. In this study we determined thatAmla extract (AE) has anti-proliferative effects on OC cells under bothin vitro and in vivo conditions. We alsodetermined the anti-proliferative effects one of the components of AE,quercetin, on OC cells under in vitro conditions. AE did notinduce apoptotic cell death, but did significantly increase the expression ofthe autophagic proteins beclin1 and LC3B-II under in vitroconditions. Quercetin also increased the expression of the autophagic proteinsbeclin1 and LC3B-II under in vitro conditions. AE alsosignificantly reduced the expression of several angiogenic genes, includinghypoxia-inducible factor 1α (HIF-1α) in OVCAR3 cells. AE acted synergisticallywith cisplatin to reduce cell proliferation and increase expression of theautophagic proteins beclin1 and LC3B-II under in vitroconditions. AE also had anti-proliferative effects and induced the expression ofthe autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors.Additionally, AE reduced endothelial cell antigen – CD31 positive blood vesselsand HIF-1α expression in mouse xenograft tumors. Together, these studiesindicate that AE inhibits OC cell growth both in vitro andin vivo possibly via inhibition of angiogenesis andactivation of autophagy in OC. Thus AE may prove useful as an alternative oradjunct therapeutic approach in helping to fight OC. 相似文献