首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Alterations in GABAergic neurotransmission are implicated in several psychiatric illnesses, including schizophrenia. The Na-K-Cl and K-Cl cotransporters regulate intracellular chloride levels. Abnormalities in cotransporter expression levels could shift the chloride electrochemical gradient and impair GABAergic transmission. In this study, we performed Western blot analysis to investigate whether the Na-K-Cl and K-Cl cotransporter protein is abnormally expressed in the dorsal lateral prefrontal cortex and the anterior cingulate cortex in patients with schizophrenia versus a control group. We found decreased K-Cl cotransporter protein expression in the dorsal lateral prefrontal cortex, but not the anterior cingulate cortex, in subjects with schizophrenia, supporting the hypothesis of region level abnormal GABAergic function in the pathophysiology of schizophrenia. Subjects with schizophrenia off antipsychotic medication at the time of death had decreased K-Cl cotransporter protein expression compared to both normal controls and subjects with schizophrenia on antipsychotics. Our results provide evidence for KCC2 protein abnormalities in schizophrenia and suggest that antipsychotic medications might reverse deficits of this protein in the illness.  相似文献   

5.
6.
Nelson and Narens have proposed a metacognition model that dissociates the objective processing of information (object-level) and the subjective evaluation of the performance (i.e., the metalevel). Neurophysiological evidence also indicates that the prefrontal cortices (PFC) are the brain areas which perform the metalevel function [1][3]. A corresponding neural mechanism of Nelson and Narens’s model, called dynamic filtering theory [4], [5], indicates that object-level processing is distributed in the posterior cortices and regulated by the prefrontal cortices with a filtering or gating mechanism to select appropriate signals and suppress inappropriate signals and noise. Based on this model, a hypothesis can be developed that, in the case of uncertainty or overloading of object-level processing, the prefrontal cortices will become more active in order to modulate signals and noise. This hypothesis is supported by a recent fMRI study [6] showing that the PFC (Brodmann area 9, BA9) was activated when subjects were overloaded in a bimodal attentional task, compared to a unimodal task. Here, we report a study showing that applying repetitive transmagnetic stimulation (rTMS) over the BA9 in order to interfere with its functional activity resulted in significant increas in guessed responses, compared to three other control conditions (i.e., no-TMS, sham TMS on BA9, and rTMS on Cz). The results are compatible with the dynamic filtering theory and suggest that a malfunction of the PFC would weaken the quality of meta-cognitive percepts and increase the number of guessed responses.  相似文献   

7.
8.
9.

Background

Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson''s disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA).

Methodology/Principal Findings

Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [11C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [11C]FLB 457 BP following right DLPFC rTMS.

Conclusions/Significance

To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.  相似文献   

10.
The lateral prefrontal and orbitofrontal cortices have both been implicated in emotion regulation, but their distinct roles in regulation of negative emotion remain poorly understood. To address this issue we enrolled 58 participants in an fMRI study in which participants were instructed to reappraise both negative and neutral stimuli. This design allowed us to separately study activations reflecting cognitive processes associated with reappraisal in general and activations specifically related to reappraisal of negative emotion. Our results confirmed that both the dorsolateral prefrontal cortex (DLPFC) and the lateral orbitofrontal cortex (OFC) contribute to emotion regulation through reappraisal. However, activity in the DLPFC was related to reappraisal independently of whether negative or neutral stimuli were reappraised, whereas the lateral OFC was uniquely related to reappraisal of negative stimuli. We suggest that relative to the lateral OFC, the DLPFC serves a more general role in emotion regulation, perhaps by reflecting the cognitive demand that is inherent to the regulation task.  相似文献   

11.
Changes in brain structure and cortical function are associated with many chronic pain conditions including low back pain and fibromyalgia. The magnitude of these changes correlates with the duration and/or the intensity of chronic pain. Most studies report changes in common areas involved in pain modulation, including the prefrontal cortex (PFC), and pain-related pathological changes in the PFC can be reversed with effective treatment. While the mechanisms underlying these changes are unknown, they must be dynamically regulated. Epigenetic modulation of gene expression in response to experience and environment is reversible and dynamic. Epigenetic modulation by DNA methylation is associated with abnormal behavior and pathological gene expression in the central nervous system. DNA methylation might also be involved in mediating the pathologies associated with chronic pain in the brain. We therefore tested a) whether alterations in DNA methylation are found in the brain long after chronic neuropathic pain is induced in the periphery using the spared nerve injury modal and b) whether these injury-associated changes are reversible by interventions that reverse the pathologies associated with chronic pain. Six months following peripheral nerve injury, abnormal sensory thresholds and increased anxiety were accompanied by decreased global methylation in the PFC and the amygdala but not in the visual cortex or the thalamus. Environmental enrichment attenuated nerve injury-induced hypersensitivity and reversed the changes in global PFC methylation. Furthermore, global PFC methylation correlated with mechanical and thermal sensitivity in neuropathic mice. In summary, induction of chronic pain by peripheral nerve injury is associated with epigenetic changes in the brain. These changes are detected long after the original injury, at a long distance from the site of injury and are reversible with environmental manipulation. Changes in brain structure and cortical function that are associated with chronic pain conditions may therefore be mediated by epigenetic mechanisms.  相似文献   

12.

Objective

The role of the Dorsolateral Prefrontal Cortex (DLPFC) in recognition memory has been well documented in lesion, neuroimaging and repetitive Transcranial Magnetic Stimulation (rTMS) studies. The aim of the present study was to investigate the effects of transcranial Direct Current Stimulation (tDCS) over the left and the right DLPFC during the delay interval of a non-verbal recognition memory task.

Method

36 right-handed young healthy subjects participated in the study. The experimental task was an Italian version of Recognition Memory Test for unknown faces. Study included two experiments: in a first experiment, each subject underwent one session of sham tDCS and one session of left or right cathodal tDCS; in a second experiment each subject underwent one session of sham tDCS and one session of left or right anodal tDCS.

Results

Cathodal tDCS over the right DLPFC significantly improved non verbal recognition memory performance, while cathodal tDCS over the left DLPFC had no effect. Anodal tDCS of both the left and right DLPFC did not modify non verbal recognition memory performance.

Conclusion

Complementing the majority of previous studies, reporting long term memory facilitations following left prefrontal anodal tDCS, the present findings show that cathodal tDCS of the right DLPFC can also improve recognition memory in healthy subjects.  相似文献   

13.
14.
Attitude to morality, reflecting cultural norms and values, is considered unique to human social behavior. Resulting moral behavior in a social environment is controlled by a widespread neural network including the dorsolateral prefrontal cortex (DLPFC), which plays an important role in decision making. In the present study we investigate the influence of neurophysiological modulation of DLPFC reactivity by means of transcranial direct current stimulation (tDCS) on moral reasoning. For that purpose we administered anodal, cathodal, and sham stimulation of the left DLPFC while subjects judged the appropriateness of hard moral personal dilemmas. In contrast to sham and cathodal stimulation, anodal stimulation induced a shift in judgment of personal moral dilemmas towards more non-utilitarian actions. Our results demonstrate that alterations of left DLPFC activity can change moral judgments and, in consequence, provide a causal link between left DLPFC activity and moral reasoning. Most important, the observed shift towards non-utilitarian actions suggests that moral decision making is not a permanent individual trait but can be manipulated; consequently individuals with boundless, uncontrollable, and maladaptive moral behavior, such as found in psychopathy, might benefit from neuromodulation-based approaches.  相似文献   

15.

Background and Objectives

Obesity is emerging as the most significant health concern of the twenty-first century. A wealth of neuroimaging data suggest that weight gain might be related to aberrant brain function, particularly in prefrontal cortical regions modulating mesolimbic addictive responses to food. Nevertheless, food addiction is currently a model hotly debated. Here, we conduct a meta-analysis of neuroimaging data, examining the most common functional differences between normal-weight and obese participants in response to food stimuli.

Data Source

We conducted a search using several journal databases and adhered to the ‘Preferred Reporting Items for Systematic Reviews and Meta-analyses’ (PRISMA) method. To this aim, 10 studies were found with a total of 126 obese participants, 129 healthy controls, equaling 184 foci (146 increased, 38 decreased activation) using the Activation Likelihood Estimation (ALE) technique. Out of the 10 studies, 7 investigated neural responses to food versus non-food images.

Results

In response to food images, obese in comparison to healthy weight subjects had increased activation in the left dorsomedial prefrontal cortex, right parahippocampal gyrus, right precentral gyrus and right anterior cingulate cortex, and reduced activation in the left dorsolateral prefrontal cortex and left insular cortex.

Conclusions

Prefrontal cortex areas linked to cognitive evaluation processes, such as evaluation of rewarding stimuli, as well as explicit memory regions, appear most consistently activated in response to images of food in those who are obese. Conversely, a reduced activation in brain regions associated with cognitive control and interoceptive awareness of sensations in the body might indicate a weakened control system, combined with hypo-sensitivity to satiety and discomfort signals after eating in those who are prone to overeat.  相似文献   

16.
The dorsolateral prefrontal and posterior parietal cortex play critical roles in mediating attention, working memory, and executive function. Despite proposed dynamic modulation of connectivity strength within each area according to task demands, scant empirical data exist about the time course of the strength of effective connectivity, particularly in tasks requiring information to be sustained in working memory. We investigated this question by performing time-resolved cross-correlation analysis for pairs of neurons recorded simultaneously at distances of 0.2–1.5 mm apart of each other while monkeys were engaged in working memory tasks. The strength of effective connectivity determined in this manner was higher throughout the trial in the posterior parietal cortex than the dorsolateral prefrontal cortex. Significantly higher levels of parietal effective connectivity were observed specifically during the delay period of the task. These differences could not be accounted for by differences in firing rate, or electrode distance in the samples recorded in the posterior parietal and prefrontal cortex. Differences were present when we restricted our analysis to only neurons with significant delay period activity and overlapping receptive fields. Our results indicate that dynamic changes in connectivity strength are present but area-specific intrinsic organization is the predominant factor that determines the strength of connections between neurons in each of the two areas.  相似文献   

17.
Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex (DLPFC). To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task), and on one cognitive task assessing the ability to adopt another person’s visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal) applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants’ tendency to adopt another’s point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males’ responses to threatening faces whereas it interferes with the ability to adopt another’s viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing.  相似文献   

18.
The effect of three antidepressant drugs, imipramine hydrochloride, clomipramine hydrochloride and zimelidine dihydrochloride on plasma free and total TRY concentrations has been examined.

The drugs were administered to male Wistar rats in the drinking water at a concentration of 200μgml-1 for up to 15 days. The effects of TRY concentration were complex and, after 2 days, inconsistent. After 14 days, the overall effect of imipramine was to lower free TRY levels and abolish 24-hr variation in free TRY concentration. Zimelidine and clomipramine tended to increase free TRY, particularly at 1300h so that the overall effect was to delay the peak in plasma-free TRY until later in the day. The possible significance of these findings to the mechanism of action of antidepressant drugs in clinical practice is discussed.  相似文献   

19.

Background

The brain biochemical changes of social anxiety have not been clarified although there have been a limited number of MR spectroscopic studies which utilized metabolite/creatine ratios. Present study aimed to explore the alteration of absolute metabolite concentration in social anxiety disorder using quantitative MR spectroscopy.

Materials and Methods

With a 3.0T MR scanner, single voxel MR spectroscopy (stimulated echo acquisition mode, TR/TE/TM = 2000/20/16 ms) was performed in the left dorsolateral prefrontal cortex and related regions of nine medication-free patients with social anxiety disorder and nine controls. Absolute metabolite concentration was calculated using tissue water as the internal reference and corrected for the partial volume of cerebrospinal fluid.

Results

In the left dorsolateral prefrontal cortex, the N-acetyl aspartate/creatine ratio of patients was significantly higher than that of controls, and this was due to the decrease of creatine concentration instead of the increase of N-acetyl aspartate concentration. Furthermore, the creatine concentration of the left dorsolateral prefrontal cortex was negatively correlated with the scores of Liebowitz social anxiety scale.

Conclusions

The alteration of creatine level in the left dorsolateral prefrontal cortex suggests abnormal energy metabolism and correlates with symptom severity in social anxiety disorder. And metabolite concentration is preferable to metabolite/creatine ratio for the investigation of individual, absolute metabolite changes in this region of social anxiety disorder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号