首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
In the leech embryo, neurogenesis takes place within the context of a stereotyped cell lineage. The prospective germ layers are formed during the early cleavage divisions by the reorganization and segregation of circumscribed domains within the cytoplasm of the fertilized egg. The majority of central neurons arise from the ectoderm, and central neuroblasts are distributed throughout both the length and width of each ectodermal hemisegment. Much of the segmental ganglion arises from medial neuroblasts, but there are also lateral ectodermal neuroblasts and mesodermal neuroblasts that migrate into the nascent ganglion from peripheral sites of origin. Some of these migratory cells are committed to neurogenesis prior to reaching their central destination. In addition, the leech embryo exhibits a secondary phase of neurogenesis that is restricted to the two sex segment ganglia. Secondary neurogenesis requires that a mitogenic or trophic signal be conveyed from the peripherally located male sex organ to a particular set of centrally located neuroblasts, apparently via already differentiated central neurons that innervate the sex organ. The differential specification of neuronal phenotypes within the leech central nervous system occurs in multiple steps. Some aspects of a neuron's identity are already specified at the time of its terminal cell division and would seem to involve the lineal inheritance of developmental commitments made by one of the neuron's progenitors. This lineage-based identity can then be modified by interactions between the postmitotic neuron and other neurons or non-neuronal target cells encountered during its terminal differentiation. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
3.
Precision of synaptic connections in neuronal circuits is the product of an orderly assembly process during development. Circuits controlling motor behavior have been studied extensively in many animal species, allowing an assessment of evolutionarily conserved organizational principles that underlie neuronal subtype specification, connectivity and function. Across phylogenetically distant species, motor circuit assembly is based on spatial organization of interconnected circuit elements. Developmental molecular coordinate systems demarcate dendritic and axonal targeting territories, thereby regulating convergence of synaptic partners. Additional mechanisms subsequently control fine synaptic connection specificity within these domains. Spatial organization often correlates with the orderly sequence of neurogenesis contributing to the generation of distinct postmitotic neuronal subpopulations, a developmental strategy implemented far beyond motor circuits.  相似文献   

4.
Understanding the principles governing axonal and dendritic branching is essential for unravelling the functionality of single neurons and the way in which they connect. Nevertheless, no formalism has yet been described which can capture the general features of neuronal branching. Here we propose such a formalism, which is derived from the expression of dendritic arborizations as locally optimized graphs. Inspired by Ramón y Cajal''s laws of conservation of cytoplasm and conduction time in neural circuitry, we show that this graphical representation can be used to optimize these variables. This approach allows us to generate synthetic branching geometries which replicate morphological features of any tested neuron. The essential structure of a neuronal tree is thereby captured by the density profile of its spanning field and by a single parameter, a balancing factor weighing the costs for material and conduction time. This balancing factor determines a neuron''s electrotonic compartmentalization. Additions to this rule, when required in the construction process, can be directly attributed to developmental processes or a neuron''s computational role within its neural circuit. The simulations presented here are implemented in an open-source software package, the “TREES toolbox,” which provides a general set of tools for analyzing, manipulating, and generating dendritic structure, including a tool to create synthetic members of any particular cell group and an approach for a model-based supervised automatic morphological reconstruction from fluorescent image stacks. These approaches provide new insights into the constraints governing dendritic architectures. They also provide a novel framework for modelling and analyzing neuronal branching structures and for constructing realistic synthetic neural networks.  相似文献   

5.
6.
The development of the nervous system involves the generation of a stunningly diverse array of neuronal subtypes that enable complex information processing and behavioral outputs. Deciphering how the nervous system acquires and interprets information and orchestrates behaviors will be greatly enhanced by the identification of distinct neuronal circuits and by an understanding of how these circuits are formed, changed, and/or maintained over time. Addressing these challenging questions depends in part on the ability to accurately identify and characterize the unique neuronal subtypes that comprise individual circuits. Distinguishing characteristics of neuronal subgroups include but are not limited to neurotransmitter phenotype, dendritic morphology, the identity of synaptic partners, and the expression of constellations of subgroup-specific proteins, including ion channel subtypes.  相似文献   

7.
Endocannabinoids (eCBs) function as retrograde messengers at both excitatory and inhibitory synapses, and control various forms of synaptic plasticity in the adult brain. The molecular machinery required for specific eCB functions during synaptic plasticity is well established. However, eCB signaling plays surprisingly fundamental roles in controlling the acquisition of neuronal identity during CNS development. Recent work suggests that selective recruitment of regulatory signaling networks to CB1 cannabinoid receptors dictates neuronal state-change decisions. In addition, the spatial localization and temporal precision of eCB actions emerges as a novel organizer in developing neuronal networks. Current challenges include fitting novel molecular candidates into regulatory eCB signaling pathways, and defining the temporal dynamics of context-dependent signaling mechanisms underpinning particular neuronal specification events.  相似文献   

8.
哺乳动物大脑皮层发育过程中,神经前体细胞精密有序地产生不同类型的子代细胞,如神经元和胶质细胞.特异转录因子精确激活或抑制性状决定基因在该过程中发挥决定性作用.最近的研究发现,长非编码RNA(lncRNA)在器官发育和疾病发生过程中发挥重要的基因调控功能,但lncRNA在大脑皮层发育过程中发挥的作用尚不清楚.本研究发现,在小鼠大脑皮层发育过程中,lncRNA-Tug1的表达量随着神经元的产生而显著上调.组织原位杂交显示,在皮层发育的几个关键时期,Tug1广泛分布于背侧前脑神经前体细胞及其子代细胞中.应用小鼠子宫内电穿孔技术敲低Tug1,发现Tug1对神经前体细胞的增殖或分化没有显著性影响.本研究构建了特异针对Tug1转录起始位点上游的TALEN表达载体,在培养的小鼠细胞里发现它们具有显著的切割效率.下一步将在Tug1转录起始位点5′端敲入多聚腺苷酸尾(Poly A)信号片段,以构建Tug1失活小鼠模型,研究Tug1在皮层发育过程中的作用,并探索高效建立lncRNA失活小鼠模型的途径.  相似文献   

9.
10.
Damage to motor neurons induces regeneration processes including axonal growth and change of synaptic properties. Sensory axons that run along the motor axons are also damaged, but their possible role in the motor neuron''s regeneration is generally ignored. Here, the effect of eliminating some sensory inputs from intact motor axons on the motor axon''s properties was studied. Micro-dissecting one of the segmental, bilateral, sensory stretch receptor pairs of the crayfish abdomen induced the deep extensor abdominal motor axons to grow and changed their synaptic properties. The results demonstrate directly, probably for the first time, that change in sensory neuron activity can induce motor axons to grow, form new synapses, and change their synaptic properties.  相似文献   

11.
12.
13.
Hyperphosphorylated Rab10 has been implicated in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. However, the neurophysiological function of the evolutionarily conserved Thr73 phosphorylation of Rab10 remains poorly understood. Here, we generated a novel mouse model expressing the non-phosphorylatable T73V mutation of Rab10 and performed a comprehensive series of neurological analyses, including behavioral tests, synaptic evaluations, neuronal and glial staining, assessments of neurite arborization and spine morphogenesis. The Rab10 T73V mutantmice exhibited a characteristic anxiety-like phenotype with other behavioral modules relatively unaffected. Moreover, Rab10 T73V mutant mice displayed striatum-specific synaptic dysfunction, as indicated by aberrantly increased expression levels of synaptic proteins and impaired frequencies of miniature inhibitory postsynaptic currents. The genetic deletion of Rab10 phosphorylation enhanced neurite arborization and accelerated spine maturation in striatal medium spiny neurons. Our findings emphasize the specific role of intrinsic phospho-Rab10 in the regulation of the striatal circuitry and its related behaviors.  相似文献   

14.
15.
16.
The magnitude and apparent complexity of the brain''s connectivity have left explicit networks largely unexplored. As a result, the relationship between the organization of synaptic connections and how the brain processes information is poorly understood. A recently proposed retinal network that produces neural correlates of color vision is refined and extended here to a family of general logic circuits. For any combination of high and low activity in any set of neurons, one of the logic circuits can receive input from the neurons and activate a single output neuron whenever the input neurons have the given activity state. The strength of the output neuron''s response is a measure of the difference between the smallest of the high inputs and the largest of the low inputs. The networks generate correlates of known psychophysical phenomena. These results follow directly from the most cost-effective architectures for specific logic circuits and the minimal cellular capabilities of excitation and inhibition. The networks function dynamically, making their operation consistent with the speed of most brain functions. The networks show that well-known psychophysical phenomena do not require extraordinarily complex brain structures, and that a single network architecture can produce apparently disparate phenomena in different sensory systems.  相似文献   

17.
18.
19.
The formation of axonal connections in the nervous system involves cell-specific decisions of the growth cone. In this article we examine the contribution of early fate decisions to axonal pathfinding. Evidence is accumulating that different neuronal cell types in the cerebral cortex are specified during their final mitosis. It would seem that cortical projection neurons are pre-specified to choose particular pathways, since the newly generated neurons send out their axons in the correct direction from the onset of outgrowth. Pathfinding decisions that are made much later during development, such as the recognition of specific target-derived chemoattractants and the retraction of inappropriate axon collaterals, also seem to be at least partially pre-specified at much earlier developmental stages. Hence, the early determination of a neuron's phenotype includes the specification of axonal growth occuring over a protracted phase of development. Understanding more about the regulative events targeted to the growth cone should help us to unravel the decisions made by this specialized neuronal organelle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号