首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza viruses can take on two distinct morphologies: filamentous or spherical. While the functional significance of each virion type is unclear, filaments are generally observed in low-passage-number isolates, while an exclusively spherical morphology is seen in strains grown extensively in laboratory substrates. Previous studies have shown that filamentous morphology is lost upon passage in eggs. The fact that the filamentous morphology is maintained in nature but not in the laboratory suggests that filaments provide an advantage in the host that is not necessary for growth in laboratory substrates. To test this hypothesis and identify naturally occurring mutations that alter morphology, we examined the effect of serial adaptation in eggs, MDCK cells, and guinea pigs. Two filamentous strains, A/Netherlands/602/2009 (H1N1) and A/Georgia/M5081/2012 (H1N1), were passaged in eggs and MDCK cells. Conversely, the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1) was passaged in guinea pigs. We found that although passage in eggs and MDCK cells can lead to a loss of filaments, an exclusively spherical morphology is not required for highly efficient growth in either substrate. We did, however, identify two point mutations in the matrix of egg passage 10 isolates that confer spherical morphology and increased growth in eggs. In contrast, serial passage in guinea pigs resulted in the selection of filament-forming variants. Sequencing revealed point mutations to the PR8 matrix that, when introduced individually, yielded filaments. These findings suggest a functional role for filaments in the infected host and expand the breadth of mutations known to affect influenza virus shape.  相似文献   

2.
Influenza viruses exhibit striking variations in particle morphology between strains. Clinical isolates of influenza A virus have been shown to produce long filamentous particles while laboratory-adapted strains are predominantly spherical. However, the role of the filamentous phenotype in the influenza virus infectious cycle remains undetermined. We used cryo-electron tomography to conduct the first three-dimensional study of filamentous virus ultrastructure in particles budding from infected cells. Filaments were often longer than 10 microns and sometimes had bulbous heads at their leading ends, some of which contained tubules we attribute to M1 while none had recognisable ribonucleoprotein (RNP) and hence genome segments. Long filaments that did not have bulbs were infrequently seen to bear an ordered complement of RNPs at their distal ends. Imaging of purified virus also revealed diverse filament morphologies; short rods (bacilliform virions) and longer filaments. Bacilliform virions contained an ordered complement of RNPs while longer filamentous particles were narrower and mostly appeared to lack this feature, but often contained fibrillar material along their entire length. The important ultrastructural differences between these diverse classes of particles raise the possibility of distinct morphogenetic pathways and functions during the infectious process.  相似文献   

3.
Two surface glycoproteins of influenza virus, haemagglutinin (HA) and neuraminidase (NA), play opposite roles in terms of their interaction with host sialic acid receptors. HA attaches to sialic acid on host cell surface receptors to initiate virus infection while NA removes these sialic acids to facilitate release of progeny virions. This functional opposition requires a balance. To explore what might happen when NA of an influenza virus was replaced by one from another isolate or subtype, in this study, we generated three recombinant influenza A viruses in the background of A/PR/8/34 (PR8) (H1N1) and with NA genes obtained respectively from the 2009 pandemic H1N1 virus, a highly pathogenic avian H5N1 virus, and a lowly pathogenic avian H9N2 virus. These recombinant viruses, rPR8-H1N1NA, rPR8-H5N1NA, and rPR8-H9N2NA, were shown to have similar growth kinetics in cells and pathogenicity in mice. However, much more rPR8-H5N1NA and PR8-wt virions were released from chicken erythrocytes than virions of rPR8-H1N1NA and rPR8-H9N2NA after 1 h. In addition, in MDCK cells, rPR8-H5N1NA and rPR8-H9N2NA infected a higher percentage of cells, and induced cell-cell fusion faster and more extensively than PR8-wt and rPR8-H1N1NA did in the early phase of infection. In conclusion, NA replacement in this study did not affect virus replication kinetics but had different effects on infection initiation, virus release and fusion of infected cells. These phenomena might be partially due to NA proteins’ different specificity to α2-3/2-6-sialylated carbohydrate chains, but the exact mechanism remains to be explored.  相似文献   

4.
Influenza virus is pleiomorphic, producing both spherical (100-nm-diameter) and filamentous (100-nm by 20-μm) virions. While the spherical virions are known to enter host cells through exploitation of clathrin-mediated endocytosis, the entry pathway for filamentous virions has not been determined, though the existence of an alternative, non-clathrin-, non-caveolin-mediated entry pathway for influenza virus has been known for many years. In this study, we confirm recent results showing that influenza virus utilizes macropinocytosis as an alternate entry pathway. Furthermore, we find that filamentous influenza viruses use macropinocytosis as the primary entry mechanism. Virions enter cells as intact filaments within macropinosomes and are trafficked to the acidic late-endosomal compartment. Low pH triggers a conformational change in the M2 ion channel protein, altering membrane curvature and leading to a fragmentation of the filamentous virions. This fragmentation may enable more-efficient fusion between the viral and endosomal membranes.  相似文献   

5.
Influenza virus strains are often pleiomorphic, a characteristic that is largely attributed to specific residues in matrix protein 1 (M1). Although the mechanism by which M1 controls virion morphology has not yet been defined, it is suggested that the M1 interaction with other viral proteins plays an important role. In this study, we rescued recombinant virus WSN-AichiM1 containing the spherical A/WSN/33 (WSN) backbone and the M1 protein from A/Aichi/2/68 (Aichi). Aichi M1 differs from WSN M1 by 7 amino acids but includes those identified to be responsible for filamentous virion formation. Interestingly, Aichi virus produced spherical virions, while WSN-AichiM1 exhibited a long filamentous morphology, as detected by immunofluorescence and electron microscopy. Additional incorporation of Aichi nucleoprotein (NP) but not the hemagglutinin (HA), neuraminidase (NA), or M2 gene to WSN-AichiM1 abrogated filamentous virion formation, suggesting that specific M1-NP interactions affect virion morphology. Further characterization of viruses containing WSN/Aichi chimeric NPs identified residues 214, 217, and 253 of Aichi NP as necessary and sufficient for the formation of spherical virions. NP residues 214 and 217 localize at the minor groove between the two opposite-polarity NP helical strands of viral ribonucleocapsids, and residue 253 also localizes near the surface of the groove. These findings indicate that NP plays a critical role in influenza virus morphology, possibly through its interaction with the M1 layer during virus budding.  相似文献   

6.
《Free radical research》2013,47(1-3):11-22
Suspensions of orthomyxo- and paramyxoviruses are composed of pleomorphic particles ranging from large filaments to small spheres. Influenza and Sendai viruses were separated according to size by gel filtration and the induction of luminol-dependent chemiluminescence (CL) by particles of similar size was studied in suspensions of mouse spleen cells known to contain phagocytes. CL reflects the generation by the cells of reactive oxygen species. CL induction decreased with particle size for both viruses. Compared with small spheres, large influenza filaments were approximately 10 times as efficient in activating cellular light emission while the ratio between large and small Sendai viruses was 3:1. Small Sendai virus particles were also less efficient in lysing red cells and had lower neuraminidase activity. By contrast, with influenza virus, only neuraminidase and not the hemolytic activity decreased with the virus size. When influenza virus filaments were broken into smaller particles by sonication, the capacity to induce chemiluminescence dropped markedly while the hemolytic and hemagglutinating activities increased and neuraminidase activity remained unaltered. These results suggest that the presentation of influenza virus hemagglutinin and neuraminidase glycoproteins in a large particle, leading to extensive receptor crosslinking, may be an important factor in the efficient activation of CL by filamentous influenza virus. We suggest that radical generation as reflected in cellular CL may relate to the toxic in vivo effects that contribute to the pathogenesis of influenza and infections with paramyxoviruses.  相似文献   

7.
Effective antiviral drugs are essential for early control of an influenza pandemic. It is therefore crucial to evaluate the possible threat posed by neuraminidase (NA) inhibitor-resistant influenza viruses with pandemic potential. Four NA mutations (E119G, H274Y, R292K, and N294S) that have been reported to confer resistance to NA inhibitors were each introduced into recombinant A/Vietnam/1203/04 (VN1203) H5N1 influenza virus. For comparison, the same mutations were introduced into recombinant A/Puerto Rico/8/34 (PR8) H1N1 influenza virus. The E119G and R292K mutations significantly compromised viral growth in vitro, but the H274Y and N294S mutations were stably maintained in VN1203 and PR8 viruses. In both backgrounds, the H274Y and N294S mutations conferred resistance to oseltamivir carboxylate (50% inhibitory concentration [IC(50)] increases, >250-fold and >20-fold, respectively), and the N294S mutation reduced susceptibility to zanamivir (IC(50) increase, >3.0-fold). Although the H274Y and N294S mutations did not compromise the replication efficiency of VN1203 or PR8 viruses in vitro, these mutations slightly reduced the lethality of PR8 virus in mice. However, the VN1203 virus carrying either the H274Y or N294S mutation exhibited lethality similar to that of the wild-type VN1203 virus. The different enzyme kinetic parameters (V(max) and K(m)) of avian-like VN1203 NA and human-like PR8 NA suggest that resistance-associated NA mutations can cause different levels of functional loss in NA glycoproteins of the same subtype. Our results suggest that NA inhibitor-resistant H5N1 variants may retain the high pathogenicity of the wild-type virus in mammalian species. Patients receiving NA inhibitors for H5N1 influenza virus infection should be closely monitored for the emergence of resistant variants.  相似文献   

8.
The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis.  相似文献   

9.
In April 2009, a novel influenza virus emerged as a result of genetic reassortment between two pre-existing swine strains. This highly contagious H1N1 recombinant (pH1N1) contains the same genomic background as North American triple reassortant (TR) viruses except for the NA and M segments which were acquired from the Eurasian swine lineage. Yet, despite their high degree of genetic similarity, we found the morphology of virions produced by the pH1N1 isolate, A/California/04/09 (ACal-04/09), to be predominantly spherical by immunufluorescence and electron microscopy analysis in human lung and swine kidney epithelial cells, whereas TR strains were observed to be mostly filamentous. In addition, nine clinical pH1N1 samples collected from nasal swab specimens showed similar spherical morphology as the ACal-04/09 strain. Sequence analysis between TR and pH1N1 viruses revealed four amino acid differences in the viral matrix protein (M1), a known determinant of influenza morphology, at positions 30, 142, 207, and 209. To test the role of these amino acids in virus morphology, we rescued mutant pH1N1 viruses in which each of the four M1 residues were replaced with the corresponding TR residue. pH1N1 containing substitutions at positions 30, 207 and 209 exhibited a switch to filamentous morphology, indicating a role for these residues in virion morphology. Substitutions at these residues resulted in lower viral titers, reduced growth kinetics, and small plaque phenotypes compared to wild-type, suggesting a correlation between influenza morphology and efficient cell-to-cell spread in vitro. Furthermore, we observed efficient virus-like particle production from cells expressing wild-type pH1N1 M1, but not M1 containing substitutions at positions 30, 207, and 209, or M1 from other strains. These data suggest a direct role for pH1N1 specific M1 residues in the production and release of spherical progeny, which may contribute to the rapid spread of the pandemic virus.  相似文献   

10.
Suspensions of orthomyxo- and paramyxoviruses are composed of pleomorphic particles ranging from large filaments to small spheres. Influenza and Sendai viruses were separated according to size by gel filtration and the induction of luminol-dependent chemiluminescence (CL) by particles of similar size was studied in suspensions of mouse spleen cells known to contain phagocytes. CL reflects the generation by the cells of reactive oxygen species. CL induction decreased with particle size for both viruses. Compared with small spheres, large influenza filaments were approximately 10 times as efficient in activating cellular light emission while the ratio between large and small Sendai viruses was 3:1. Small Sendai virus particles were also less efficient in lysing red cells and had lower neuraminidase activity. By contrast, with influenza virus, only neuraminidase and not the hemolytic activity decreased with the virus size. When influenza virus filaments were broken into smaller particles by sonication, the capacity to induce chemiluminescence dropped markedly while the hemolytic and hemagglutinating activities increased and neuraminidase activity remained unaltered. These results suggest that the presentation of influenza virus hemagglutinin and neuraminidase glycoproteins in a large particle, leading to extensive receptor crosslinking, may be an important factor in the efficient activation of CL by filamentous influenza virus. We suggest that radical generation as reflected in cellular CL may relate to the toxic in vivo effects that contribute to the pathogenesis of influenza and infections with paramyxoviruses.  相似文献   

11.
In this study, we investigated the role of the conserved neuraminidase (NA) cytoplasmic tail residues in influenza virus replication. Mutants of influenza A virus (A/WSN/33 [H1N1]) with deletions of the NA cytoplasmic tail region were generated by reverse genetics. The resulting viruses, designated NOTAIL, contain only the initiating methionine of the conserved six amino-terminal residues. The mutant viruses grew much less readily and produced smaller plaques than did the wild-type virus. Despite similar levels of NA cell surface expression by the NOTAIL mutants and wild-type virus, incorporation of mutant NA molecules into virions was decreased by 86%. This reduction resulted in less NA activity per virion, leading to the formation of large aggregates of progeny mutant virions on the surface of infected cells. A NOTAIL virus containing an additional mutation (Ser-12 to Pro) in the transmembrane domain incorporated three times more NA molecules into virions than did the NOTAIL parent but approximately half of the amount incorporated by the wild-type virus. However, aggregation of the progeny virions still occurred at the cell surface. All NOTAIL viruses were attenuated in mice. We conclude that the cytoplasmic tail of NA is not absolutely essential for virus replication but exerts important effects on the incorporation of NA into virions and thus on the aggregation and virulence of progeny virus. In addition, the relative abundance of long filamentous particles formed by the NOTAIL mutants, compared with the largely spherical wild-type particles, indicates a role for the NA cytoplasmic tail in virion morphogenesis.  相似文献   

12.
Virions are a common antigen source for many viral vaccines. One limitation to using virions is that the antigen abundance is determined by the content of each protein in the virus. This caveat especially applies to viral-based influenza vaccines where the low abundance of the neuraminidase (NA) surface antigen remains a bottleneck for improving the NA antibody response. Our systematic analysis using recent H1N1 vaccine antigens demonstrates that the NA to hemagglutinin (HA) ratio in virions can be improved by exchanging the viral backbone internal genes, especially the segment encoding the polymerase PB1 subunit. The purified inactivated virions with higher NA content show a more spherical morphology, a shift in the balance between the HA receptor binding and NA receptor release functions, and induce a better NA inhibitory antibody response in mice. These results indicate that influenza viruses support a range of ratios for a given NA and HA pair which can be used to produce viral-based influenza vaccines with higher NA content that can elicit more balanced neutralizing antibody responses to NA and HA.  相似文献   

13.
Study of the possibilities of virions and viral proteins modifications and structural remodeling is an important problem of the modern molecular virology. A technique of heat treatment of rod-shaped tobacco mosaic virus that allowed producing structurally modified spherical particles consisting of the virus coat protein was previously developed in our laboratory. These particles possessed unique adsorption and immunogenic properties and were successfully used to develop a new candidate vaccine against rubella virus. Later, the possibility of thermal remodeling of the filamentous virions of potato virus X was demonstrated. The present work reports a comparative study of thermal remodeling of viruses with different structure belonging to various taxonomic groups. The generation of structurally modified spherical particles by the heat treatment of rod-shaped virions with helical symmetry (dolichos enation mosaic virus and barley stripe mosaic virus) has been demonstrated. The dependence of the size of spherical particles derived from dolichos enation mosaic virus on the initial virus concentration was revealed. The process of thermal remodeling of the filamentous virions and virus-like particles of alternanthera mosaic virus was studied. Heat treatment of plant viruses with icosahedral symmetry was shown to cause no morphological changes.  相似文献   

14.
Six nonoverlapping peptides of the neuraminidase (NA) glycoprotein of influenza virus A/Puerto Rico/8/34 (H1N1) (PR8 virus) were found to be immunogenic for proliferating T cells when injected into BALB/c mice in Freund adjuvant. T cells elicited by peptide immunization could recognize PR8 virus in vitro. However, only one of these peptides, corresponding to residues 79 to 93 of NA (NA 79-93), was able to restimulate T cells of mice immunized with infectious virus. T cells that recognized this peptide were uniformly I-Ed restricted, yet infectious influenza virus was required for responses. NA 79-93-specific T-hybridoma clones raised by immunization either with whole virus or with the synthetic peptide alone each responded to replicative virus and not to UV-inactivated virions. These data suggest that the NA 79-93 T-cell determinant which is commonly presented during an encounter with influenza virus in vivo is processed preferentially from NA synthesized within antigen-presenting cells.  相似文献   

15.
Avian influenza viruses (AIV), the causative agent of avian flu or bird flu, cause widespread morbidity and mortality in poultry. The symptoms of the disease range from mild flu like symptoms to death. These viruses possess two important surface glycoproteins, namely hemagglutinin (HA) and neuraminidase (NA) against which neutralizing antibodies are produced. Due to the highly mutative nature of the genes which encode these proteins, the viruses often confer resistance to the current anti-viral drugs making the prevention and treatment of infection challenging. In our laboratory, we have recently identified a novel anti-viral peptide (P1) against the AIV H9N2 from a phage displayed peptide library. This peptide inhibits the replication of the virus in ovo and in vitro by its binding to the HA glycoprotein. In the current study, we demonstrate that the peptide inhibits the virus replication by preventing the attachment to the host cell but it does not have any effect on the viral fusion. The reduction in the viral nucleoprotein (NP) expression inside the host cell has also been observed during the peptide (P1) treatment. This novel peptide may have the potential to be developed as a therapeutic agent for the treatment and control of avian influenza virus H9N2 infections.  相似文献   

16.
Mori K  Haruyama T  Nagata K 《PloS one》2011,6(11):e28178
The infection of viruses to a neighboring cell is considered to be beneficial in terms of evasion from host anti-virus defense systems. There are two pathways for viral infection to "right next door": one is the virus transmission through cell-cell fusion by forming syncytium without production of progeny virions, and the other is mediated by virions without virus diffusion, generally designated cell-to-cell transmission. Influenza viruses are believed to be transmitted as cell-free virus from infected cells to uninfected cells. Here, we demonstrated that influenza virus can utilize cell-to-cell transmission pathway through apical membranes, by handover of virions on the surface of an infected cell to adjacent host cells. Live cell imaging techniques showed that a recombinant influenza virus, in which the neuraminidase gene was replaced with the green fluorescence protein gene, spreads from an infected cell to adjacent cells forming infected cell clusters. This type of virus spreading requires HA activation by protease treatment. The cell-to-cell transmission was also blocked by amantadine, which inhibits the acidification of endosomes required for uncoating of influenza virus particles in endosomes, indicating that functional hemagglutinin and endosome acidification by M2 ion channel were essential for the cell-to-cell influenza virus transmission. Furthermore, in the cell-to-cell transmission of influenza virus, progeny virions could remain associated with the surface of infected cell even after budding, for the progeny virions to be passed on to adjacent uninfected cells. The evidence that cell-to-cell transmission occurs in influenza virus lead to the caution that local infection proceeds even when treated with neuraminidase inhibitors.  相似文献   

17.
High-efficiency formation of influenza virus transfectants.   总被引:35,自引:29,他引:6       下载免费PDF全文
M Enami  P Palese 《Journal of virology》1991,65(5):2711-2713
cDNA-derived RNAs were introduced into the genomes of influenza viruses by using an improved ribonucleoprotein (RNP) transfection protocol. Up to 10(5) viral transfectants with a novel neuraminidase gene could be obtained by using a 35-mm dish (10(6) cells) for RNP transfection. In addition to genes coding for surface proteins (hemagglutinin and neuraminidase), we also exchanged a gene coding for nonsurface proteins. The cDNA-derived influenza A/PR/8/34 virus NS gene was introduced into a temperature-sensitive mutant with a defect in this gene. We suggest that the term influenza virus transfectant be used for those viruses which are made by RNP transfection with cDNA-derived RNA.  相似文献   

18.
H5N1 influenza viruses pose a pandemic threat but have not acquired the ability to support sustained transmission between mammals in nature. The restrictions to transmissibility of avian influenza viruses in mammals are multigenic, and overcoming them requires adaptations in hemagglutinin (HA) and PB2 genes. Here we propose that a further restriction to mammalian transmission of the majority of highly pathogenic avian influenza (HPAI) H5N1 viruses may be the short stalk length of the neuraminidase (NA) protein. This genetic feature is selected for when influenza viruses adapt to chickens. In our study, a recombinant virus with seven gene segments from a human isolate of the 2009 H1N1 pandemic combined with the NA gene from a typical chicken-adapted H5N1 virus with a short stalk did not support transmission by respiratory droplet between ferrets. This virus was also compromised in multicycle replication in cultures of human airway epithelial cells at 32°C. These defects correlated with a reduction in the ability of virus with a short-stalk NA to penetrate mucus and deaggregate virions. The deficiency in transmission and in cleavage of tethered substrates was overcome by increasing the stalk length of the NA protein. These observations suggest that H5N1 viruses that acquire a long-stalk NA through reassortment might be more likely to support transmission between humans. Phylogenetic analysis showed that reassortment with long-stalk NA occurred sporadically and as recently as 2011. However, all identified H5N1 viruses with a long-stalk NA lacked other mammalian adapting features and were thus several genetic steps away from becoming transmissible between humans.  相似文献   

19.
Human infections with Eurasian avian-like swine influenza H1N1 viruses have been reported in China in past years. One case resulted in death and others were mild case. In 2016, the World Health Organization recommended the use of A/Hunan/42443/2015(H1N1) virus to construct the first candidate vaccine strain for Eurasian avian-like swine influenza H1N1 viruses. Previous reports showed that the neuraminidase of A/Puerto Rico/8/34(H1N1) might improve the viral yield of reassortant viruses. Therefore, we constructed two reassortant candidate vaccine viruses of A/Hunan/42443/2015(H1N1) by reverse genetic technology, with (6+2) and (7+1) gene constitution, respectively. The (6+2) virus had hemagglutinin and neuraminidase from A/Hunan/42443/2015, and the (7+1) one had hemagglutinin from A/Hunan/42443/2015, while all the other genes were from A/Puerto Rico/8/34. Our data revealed that although the neuraminidase of the (7+1) virus was from high yield A/Puerto Rico/8/34, the hemagglutination titer and the hemagglutinin protein content of the (7+1) virus was not higher than that of the (6+2) virus. Both of the (7+1) and (6+2) viruses reached a similar level to that of A/Puerto Rico/8/34 at the usual harvest time in vitro. Therefore, both reassortant viruses are potential candidate vaccine viruses, which could contribute to pandemic preparedness.  相似文献   

20.
Reverse genetics has been documented for influenza A, B, and Thogoto viruses belonging to the family Orthomyxoviridae. We report here the reverse genetics of influenza C virus, another member of this family. The seven viral RNA (vRNA) segments of C/Ann Arbor/1/50 were expressed in 293T cells from cloned cDNAs, together with nine influenza C virus proteins. At 48 h posttransfection, the infectious titer of the culture supernatant was determined to be 2.51 x 10(3) 50% egg infectious doses/ml, which is lower than the number of influenza C virus-like particles (VLPs) (10(6)/ml) generated using the same system. By generating influenza C VLPs containing a given vRNA segment, we showed that each of the vRNA segments was similarly synthesized in the plasmid-transfected cells but that some segments were less efficiently incorporated into the VLPs. This finding leads us to speculate that the differences in incorporation efficiency into VLPs between segments might be a reason for the inefficient production of infectious viruses. Second, we generated a mutant recombinant virus, rMG96A, which possesses an Ala-->Thr mutation at residue 24 of the M1 protein, a substitution demonstrated to be involved in the morphology (filamentous or spherical) of the influenza C VLPs. As expected, rMG96A exhibited a spherical morphology, whereas recombinant wild-type of C/Ann Arbor/1/50, rWT, exhibited a mainly filamentous morphology. Membrane flotation analysis of the cells infected with rWT or rMG96A revealed a difference in the ratio of membrane-associated M1 proteins, suggesting that the affinity of M1 protein to the cell membrane is a determinant for virion morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号